

2nd Coatings and Interfaces Web Conference

15/05/2020 - 31/05/2020

I M

Institute of Optical Materials and Technologies

Influence of the size of coal ash FAU zeolites used as dopants on the sensing properties of Nb_2O_5 thin films.

 $\underline{K.\ Lazarova^1},\ S.\ Boycheva^2,\ M.\ Vasileva^1,\ D.\ Zgureva^3 and T.\ Babeva^1$

1 Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, Sofia, Bulgaria

2,3 Technical University of Sofia, Bulgaria

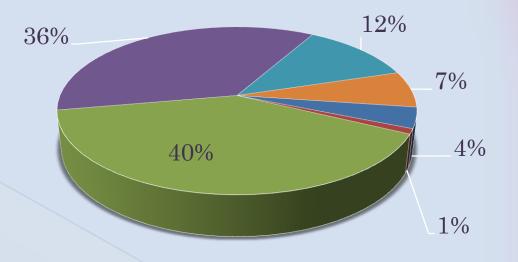
2 Department of Thermal and Nuclear Power Engineering;

3 College of Energy and Electronics

Table of content

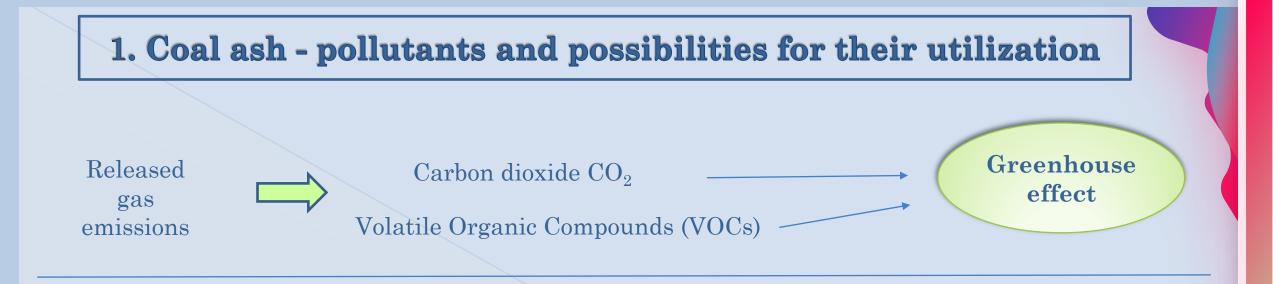
- 1. Coal ash pollutants and possibilities for their utilization
 - 2. Na-X Faujasite (FAU) zeolites synthesis from coal ashes
 - 3. Wet-milling of synthesized zeolites
 - 4. Thin films from Nb_2O_5 doped with milled and not-milled zeolites
 - 5. Characterization of thin films optical and sensing properties
 - 6. Summary

1. Coal ash - pollutants and possibilities for their utilization

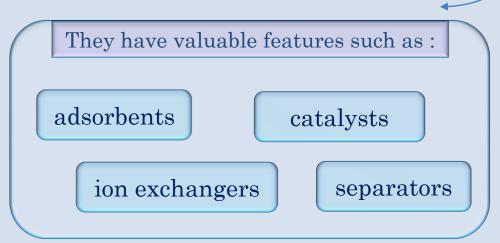

Coal is the largest source of energy from fossil fuels used for generating electricity in the world.

1. Releases of gaseous emissions sulfur, nitrogen and carbon oxides

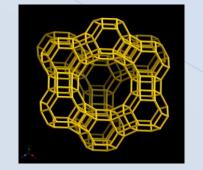
2. Generation of solid waste - ash

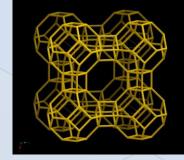

 Ash macro-component composition is considered as an alumosilicate material.

Different opportunities for utilization have been explored, including for the synthesis of zeolites. The electricity produced in Bulgaria in 2018, allocated according to the primary energy resource and used production technology.

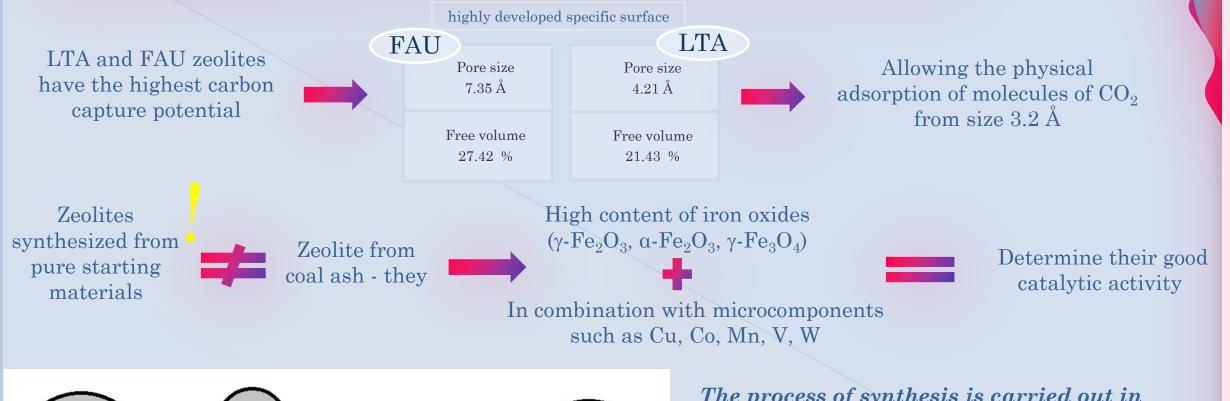


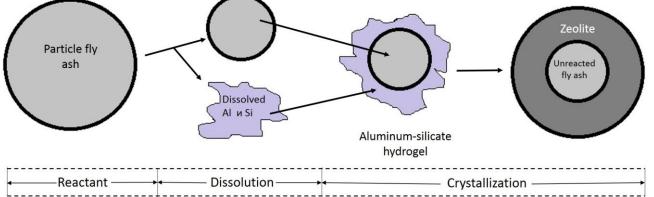
Thermal Power Plants (TPP) on gas
TPP Black and Brown Coal
TPP Lignite


- Nuclear power plant
- Water Electric Power Plant
- Solar, wind and biomass energy


For the purposes of developing CO_2 capture technologies in the search for new solid phase sorbents, **zeolites** have also been studied.

Zeolites are materials with a unique porous structure, with active centers and mobile cations of alkaline and alkaline-earth metals.



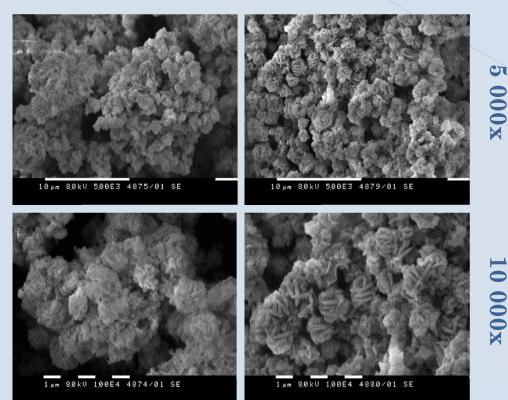

FAU

LTA

2. Na-X Faujasite (FAU) zeolites - synthesis from coal ashes

<u>The process of synthesis is carried out in</u> <u>three stages:</u>

- 1) Dissolving aluminosilicates of the ash in the alkaline solution;
- 2) Precipitation of an alumosilicate hydrogel;
- 3) Crystallization of zeolite from the alumosilicate
- gel on undissolved solid particles.


3. Wet-milling of synthesized zeolites

FAU type zeolites synthesized from coal fly ash

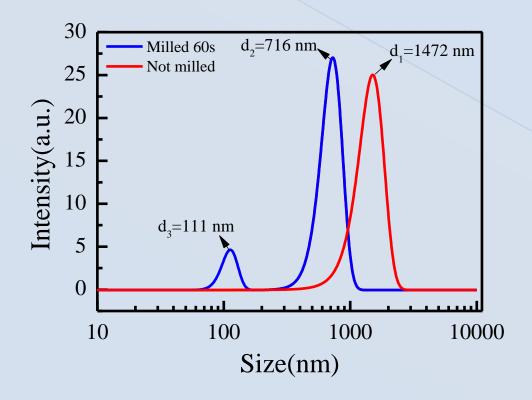
Part of the zeolites are subjected to subsequent wet milling in a ball mill for 60 s to reduce their size to submicron values.

Not milled zeolites

Milled zeolites

 Agglomerations of indistinguishable particles are observed before milling and octahedral shape crystallites typical of the FAU phase.

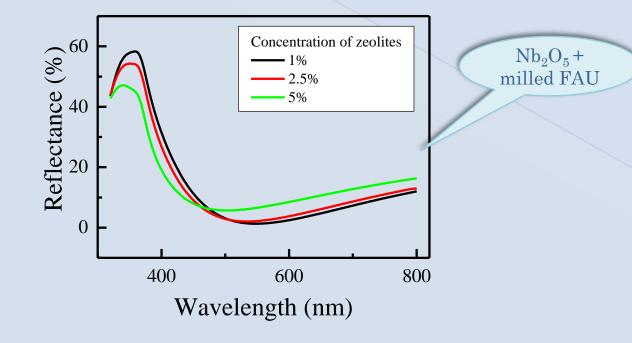
V Inclusions of particles from other zeolite phases are also found, which often accompany the crystallization of FAU from coal fly ash.


 \vee After the mechanical processing, a clear separation of the individual particles of about 1-1.5 µm size is observed.

3. Wet-milling of synthesized zeolites

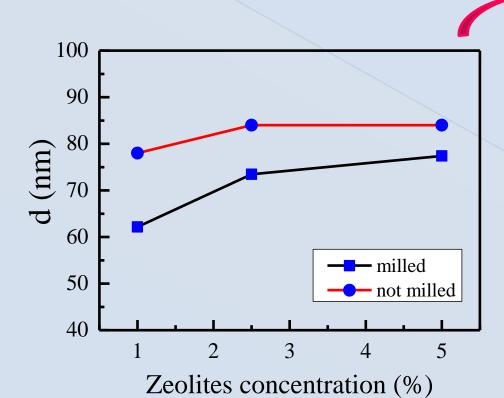
FAU type zeolites synthesized from coal fly ash

Part of the zeolites are subjected to subsequent wet milling in a ball mill for 60 s to reduce their size to submicron values.


Size distribution changes from monomodal (d_1) in the case of non-milled zeolites to bimodal $(d_2$ and $d_3)$ for milled samples:

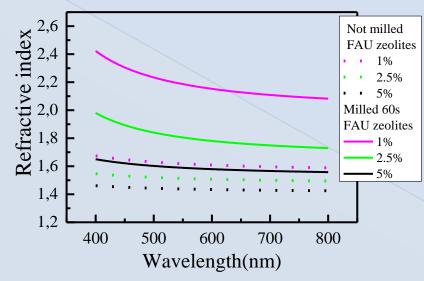
 $d_1 = 1470 \text{ nm}$ $d_2 = 716 \text{ nm}$ and $d_3 = 111 \text{ nm}$

4. Thin films from Nb_2O_5 doped with milled and not-milled zeolites Sol-gel Deposited on a silicon Thin films from Nb₂O₅ doped Spin-coating substrate, method with milled and not-milled zeolites Speed - 4000 rpm, Heated for 30 min at 320°C Milled and not-milled FAU zeolites Spin up Thinning of a liquid film Deposited thin films Saturation of solidification Solidified region v $Nb_2O_5 +$ $Nb_2O_5 +$ and milled FAU not-milled FAU in three volume concentrations 2.5%1% 5%


Reflectance spectra of the films are measured in order to study their optical properties and to calculate the thickness.

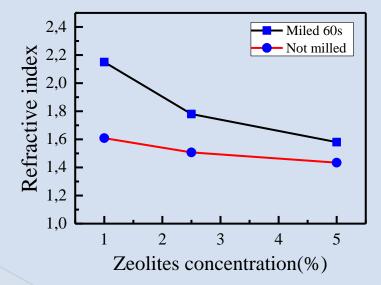
Reflectance spectra of $Nb_2O_5\, films$ with milled zeolites

 $n, k \bowtie d$ - calculated by nonlinear algorithm for minimizing the difference between measured and calculated values of the reflectance R.


> Thickness (d) Refractive index (n) Extinction coefficient (k)

Dependence of thickness *d* on zeolite concentration (**b**) of thin Nb_2O_5 films embedded with not-milled and milled fly ash FAU zeolites.

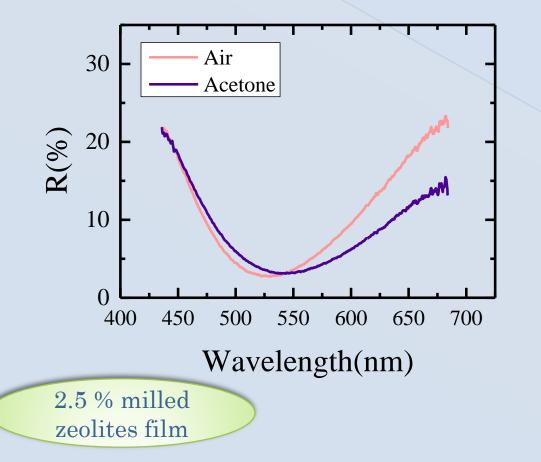
> Films doped with **not-milled** zeolites have thickness around 78 nm - 80 nm for 1% concentration and there is a slight increase in d to 84 nm at concentration of 2.5 %. There is no further increase of d with concentration.


➢ Films doped with milled zeolites have clear tendency of increasing thickness with concentration of zeolites – from 62, 73 and 77 nm for 1, 2.5 and 5 % respectively.

Dispersion curves of refractive index of thin Nb_2O_5 films embedded with not-milled and milled fly ash FAU zeolites.

Using smaller zeolites

- 1. Precise control and deposition of thin films with a specific thickness.
- 2. Control of the refractive index of the films.

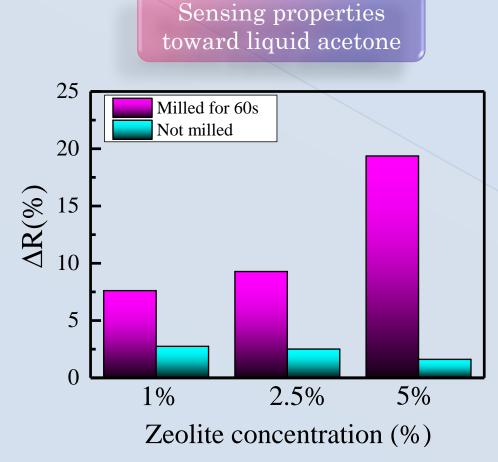


Dependence of refractive index n at wavelength of 600 nm on zeolite concentration of thin Nb₂O₅ films embedded with not-milled and milled fly ash FAU zeolites.

Films of Nb_2O_5 + milled FAU

- \succ normal dispersion curves
- > lower thickness, higher density and refractive index as compared to samples doped with not milled zeolites.
 > more pronounced decrease in n with increasing the zeolite concentration.

Sensing properties toward liquid acetone



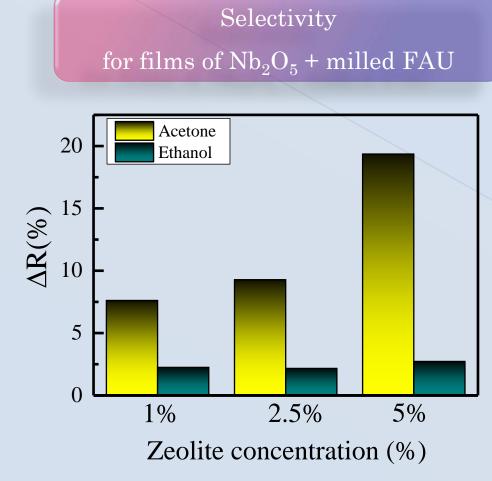
Sensing properties determination method

Measuring of the reflection spectra of thin films before and after exposure to liquid acetone.

Calculation of the acetone induced change in the reflection ΔR .

2

Zeolite concentration dependence of reflectance change induced by exposure to liquid acetone of FAU not-milled (blue bars) and milled (magenta bars) embedded in thin Nb_2O_5 films. Measurements are conducted at room temperature.


✓ The addition of not-milled zeolites results in a 1.6 - 2.5 % change in ΔR as increase of concentration leads to decrease of reflectance change.

Not - milled zeolites samples: 2.5 % max change

2

✓ In the case of films with milled zeolites - as the amount of zeolites increases, the change in the reflection coefficient ΔR increases from 7.6 to 19.4.

Milled zeolites samples: ≈20 % max change

Zeolite concentration dependence of reflectance change induced by exposure to liquid acetone (yellow) and ethanol (green) of milled zeolites embedded in thin Nb_2O_5 films. Measurements are conducted at room temperature.

- Similar measurements made with liquid ethanol for films with milled zeolites .
- ➢ Ethanol selected as probing liquid due to its similar to acetone refractive index: 1.361(eth) and 1.359(ac).

✓ The optical response toward ethanol is almost 8 times weaker as compared to acetone.

Ethanol: av. 2.5 % max change for all concentrations

✓ Increase of concentration of milled zeolites leads to increase of the change in the reflection coefficient ΔR .

Acetone: ≈20 % max change for highest concentration

- ✓ FAU zeolites of coal ash with a particle size of 1470 nm have been synthesized by alkaline atmospheric conversion.
- ✓ The possibility of reducing zeolites particle size in half and simultaneously obtaining particles of about 100 nm in size by wet milling has been demonstrated.
- ✓ Successfully have been deposited composite thin films comprising Nb₂O₅ matrix and fly ash FAU zeolites in concentrations from 1 to 5 % with good optical quality and reflectance coefficient in range 47 58 %.
- ✓ The possibility of controlling the refractive index and sensing properties of the films through variation of concentration and size of particles has been shown. The value of n varies in a wide range from 1.6 to 2.2.
- ✓ The liquid-induced changes for samples with milled zeolites are eight times higher than changes in films doped with not-milled zeolites.
- \checkmark The sensitivity is higher toward acetone compared to ethanol.

#stayhome

Thank you for your

kind attention!

Acknowledgements: The financial support of Bulgarian National Science Fund (BNSF) under the project DN 17/18 (12.12.2017) is highly appreciated. Research equipment of distributed research infrastructure INFRAMAT (part of Bulgarian National roadmap for research infrastructures) supported by Bulgarian Ministry of Education and Science under contract D01-284/17.12.2019 was used in this investigation. The assistance of Prof. Vera Marinova from IOMT-BAS in the process of zeolite milling is highly appreciated.

