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Abstract: Natural rubbers are characterized by extremely high molecular weight that might be 

beneficial in the formation of a protective barrier layer on paper substrates, providing good cohesive 

properties but limited adhesion to the substrate. In parallel, the low glass transition temperature of 

natural rubber might give the opportunity for good sealability, in contrast with severe problems of 

tack. Therefore, natural rubbers can be good candidates to serve as an alternative ecological binder 

in paper coatings for water and grease barrier resistance. In order to tune the surface properties of 

the paper coating, the effect of different fillers in natural rubber coatings are evaluated on 

rheological, thermo-mechanical and surface properties. The fillers are selected according to common 

practice for paper industry, including talc, kaolinite clay and a type of organic nanoparticles, which 

are all added in the range of 5 to 20 wt.-%. Depending on the selected natural rubber, the 

dispersibility range (i.e., dispersive and distributive mixing) of the fillers in the latex phase highly 

varies and filler/matrix interactions are the strongest for nanoparticle fillers. An optimum selection 

of viscosity range allows to obtain homogeneous mixtures without the need of surface modification 

of the additives. After bar-coating natural rubber latex composites on paper substrates, the drying 

properties of the composite coatings are followed by spectroscopy illustrating the influences of 

selected additives on the vulcanization process. In particular, the latter most efficiently improves in 

presence of nanoparticle fillers and highly increases the coating hydrophobicity in parallel reducing 

the adhesive tack surface properties, as predicted from calculated work of adhesion. 
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1. Introduction 

The demand for bio-based solutions in paper coating technology is urgent to replace oil-based 

polymers building protective coatings with high hydrophobicity. However, many biomaterials such 

as cellulose, starch, carbohydrates, proteins, glycerol have hydrophilic properties and provide a 

solution for oil-barrier properties, but the range of hydrophobic biopolymers is more restricted. As 

an alternative, the natural rubbers have intrinsic hydrophobic properties and are naturally dispersed 

in an aqueous latex phase, providing molecular structures with extremely high molecular weight. 

However, the material is often difficult to process into coating layers and its stability relies on the 

natural stabilization of the polyisoprene particles in the latex phase. On the other hand, the low glass 

transition temperatures of natural rubbers are favorable for the formation of film properties with 

rubbery characteristics at room temperature. The natural rubbers were applied as film former in 

pharmaceutical coatings [1]: while providing excellent physical properties such as high elasticity, 

high tensile strength and ease of film-forming, the films are soft and sticky [2]. The use of natural 
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rubber as paper coatings is less developed, although the application on paperboard provides low 

water affinity and low absorption rates of the coated surfaces [3]. Although it has good potential to 

replace unrecyclable wax coating material on packaging papers, the blocking (sticking) tendency 

needs to be decreased with the content increase fillers: e.g., adding modified lignin can efficiently 

reduce the sticking problem of the coating [3]. In combination with cellulose fabrics, the natural 

rubber coatings were applied in a calendaring machine with good adhesion to the substrate, which 

is presumably due to the good mechanical and chemical compatibility of natural rubber and 

lignocellulose fibers [4].  

In order to tune the composition and properties of the natural rubber coatings, additives are 

required to provide requested surface properties, although compatibility with rheological properties 

and molecular profile of the natural rubber should be investigated. In this work, typical coating fillers 

used in paper technology, including kaolinite, talc and organic styrene-maleimide nanoparticles, are 

used in combination with a natural rubber latex binder in order to investigate effects on processing 

and surface properties of the coating.  

2. Materials and Methods  

2.1. Materials 

The Vytex Natural Rubber Latex (Vystar, Worcester, MA, USA) was used as a commercially 

available “ultra-low protein” natural rubber latex with intrinsic solid content of 60 % (w/w) and pH 

= 10.4. Three different types of fillers were used, including kaolinite (KAO) powder with particle 

diameter < 2 μm and aspect ratio 20:1 (Imerys, Paris, France), talc powder, and styrene-maleimide 

(SMI) nanoparticles that were in-house synthesized according to a previous protocol [5]. The latex 

was used in non-diluted conditions for mixing with different filler types in concentrations of 5, 10, 20 

% (wt./wt.), using a 3-blade propeller mixer under constant medium shear for about 1 hour. 

The mixed latex suspensions were applied as a paper coating on a laboratory scale K303 Multi-

coater (RK Print Coat Instruments Ltd., UK), using a black metering bar number 4 (close wound wire 

diameter 0.51 mm) resulting in a wet film thickness of about 40 µm. The coatings were dried during 

2 min in a hot-air oven and further dried during one week under environmental lab conditions (23°C; 

50% RH). A reference paper grade was used for deposition of the films, including bleached Kraft pulp 

and internal sizing (350 µm thickness). In parallel, free standing rubber films of the same composition 

were cast on a PTFE foil for following adhesion measurements (the free films were more flexible and 

used as counterpart for an adhesive loop test). 

2.2. Characterization 

Rheological measurements on mixed latex suspensions were performed on an Ares G2 

equipment (TA Instruments) with a cylindrical bob-cup geometry operating at a gap distance of 2.10 

mm. A suspension volume of 20.1 ml was added into the cup and first kept in rest for about 30 min 

before testing to relief internal stresses. A continuous rotational shear test was performed under 

controlled shear rate between 0 and 1000 s-1 at a controlled temperature of 25°C, while applying three 

subsequent sequences of ramp up (15 min) – rest at 1000 s-1 (5 min) – ramp down (15 min) – rest at 0 

cm-1 (5 min) – ramp up (15 min), monitoring viscosity changes by eventual effects of hysteresis and/or 

internal history.   

The differential scanning calorimetry (DSC) measurements were done on a Q200 equipment (TA 

Instruments) on a sample mass of 8.5 mg in a heating range from -90 to 180°C at 20°C/min under 

continuous nitrogen flow. The results for Tg (glass transition temperature) and cp (heat capacity) are 

taken from the second heating step and averaged from two samples. 

The attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was done 

on separate natural rubber films (no paper coating) in order to focus on the effect of the fillers on the 

coating structure, without interfering spectral bands of the base paper. The measurements were done 

on a Vertex 70 station (Bruker, Karlsruhe, Germany) with a diamond crystal (PIKE), collecting the 
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spectra in a spectral range of 600-4000 cm-1 with resolution of 4 cm-1. A DTGS detector is installed to 

summarize 32 scans for 1 spectrum.  

The scanning electron microscopy (SEM) is done on a Tabletop TM3000 microscope (Hitachi, 

Krefeld, Germany) under acceleration voltage of 15 kV and backscattered secondary electron 

compositional mode. The magnification of 4000× was operated under a working distance of 8400 µm.  

The other paper surface properties were determined by static contact angle measurements of 

D.I. water and diiodomethane, applying a sessile drop method with drop volume of 2 µml (water) 

and 0.8 µ l (CH2I2) respectively. The adhesive properties of the coated paper surfaces were evaluated 

by an adhesive loop test on rubber films in contact with the coated paper of the same rubber 

composition, using a universal tensile tester (Schimadzu, Kyoto, Japan). A representative geometry 

of a film loop with width of 1 cm and length of 5 cm was clamped in between the upper dies and 

brought to a distance of 1 cm above the coated paper substrate that was horizontally fixed in the 

lower dies. The tack is characterized as the maximum force upon withdrawal of the rubber film from 

the coated paper surface, where experimental values of adhesive force are comparable due to the 

constant geometries.  

3. Results 

3.1. Rheological Properties 

The rheological properties of the coating suspensions are presented as the variation of shear 

viscosity as a function of shear rates over three subsequent cycles, as given in Figure 1. The curves 

are recorded for suspensions with different fillers relatively to the native natural rubber latex with 

solid content 60 % (note: the viscosity scale of the materials is different for most detailed 

representation of the values). All filler types increased the viscosity of the original rubber latex to a 

different extent, however, all of them showing a shear-thinning effect with decreasing viscosity as a 

function of shear rate. The shear thinning behavior is enhanced in presence of the fillers in most cases. 

The highest viscosities are observed for kaolinite fillers with almost linear decrease in viscosity with 

shear rate at the highest concentrations, while the hysteresis of the kaolinite fillers is relatively low. 

It indicates the presence of strong mixing interactions between the kaolinite fillers and strong 

interactions with the natural rubber latex. The viscosity increase for SMI nanoparticles is significant 

with a more pronounced shear thinning effect, as the orientation of the nanoparticles under shear 

may additionally influence the structure of the suspension. The viscosity effects of nanoparticles are 

different than the microsize kaolinite, as an increase in nanoparticle concentration involves a decrease 

in viscosity. Therefore, it can be concluded from a viscosity-reducing effect of the nanoparticles that 

shear-induced mechanisms are influencing the nanoparticle mobility in the suspension and 

eventually lead to the orientation effects. The effects of reorganization of nanofillers in the rubber 

latex is also indicated by the relatively high hysteresis observed between the first and second ramp-

up sequence for all concentrations, which was not observed for kaolinite fillers. Indeed, the nanoscale 

particles may have stronger influence on the latex flow properties compared to microscale particles. 

The latter are minimized in case of talcum fillers, where very little alterations in viscosity and shear 

thinning effects are observed compared to the native rubber latex. However, the hysteresis effects for 

talc are also more pronounced than for kaolinite as it may be expected that the talc has a rather platelet 

structure that can be affected more by orientation effects under flow, while the kaolinite particles 

have a rather symmetrical shape. As it is observed that the viscosity for intermediate talc 

concentrations of 10 wt.-% decreases and the viscosity for the high talc concentrations of 20 wt.-% 

increases, the possible benefits of orientation of the platelet structures are optimized at intermediate 

concentrations and hindered at the highest concentrations, where the highest concentrations might 

eventually lead to platelet/platelet interactions rather than platelet/latex interactions. The chemical 

interactions between the fillers and the natural rubber latex were not further studied at this stage, but 

beside particle shape, they can be attributed to specific surface interactions own to the functional 

groups at the surface of the fillers, size distribution of the fillers and/or variations zeta potential. 
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While the present aim is to provide a view on the influence of the rheological properties on the coating 

formation, the latter interactions are subject of a more fundamental study in future.  

 

Figure 1. Rheological properties of natural rubber suspensions with different fillers at different 

concentrations relatively to the unfilled natural rubber suspension (purple curve), (a) Kaolinite, (b) 

SMI nanoparticles, (c) Talc. 

3.2. Microstructural Properties 

The effects of fillers on the microstructure of the natural rubber latex are evidenced by results of 

DSC analysis, as summarized in Figure 2. The pure natural rubber is characterized by a low glass 

transition temperature of Tg = -64.53°C and no further thermal transitions have been noticed over the 

temperature range up to 180°C as no specific vulcanization agents were added. The change in heat 

capacity cp = 0.4940 J/(g°C) over the glass transition is a measure for the change in the molecular 

mobility in the amorphous phase during the glass transition and may indicate variations in molecular 

structure induced, e.g., by chain interactions or cross-linking reactions in the amorphous phase.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. DSC results of natural rubbers with a detail on the glass transition in presence of different 

types and concentrations of fillers, listing glass transition temperature Tg and heat capacity change 

cp (compositions in wt.-%). 

  

composition Tg (°C)  cp (J/g°C) 

Pure NR -64.53 0.4940 

+ 5 % KAO -64.22 0.4752 

+ 10 % KAO -64.08 0.4581 

+ 20 % KAO -63.95 0.4142 

+ 5 % SMI -64.08 0.4838 

+ 10 % SMI -63.76 0.4520 

+ 20 % SMI -64.40 0.3996 

+ 5 % Talc -64.23 0.4857 

+ 10 % Talc -64.28 0.4620 

+ 20 % Talc -64.41 0.4510 
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The slight but consistent variations in Tg and cp are noticed in presence of fillers to different 

extent depending on the filler type and concentration. A detail of the glass transition step during 

heating indeed shows either a shift in the temperature Tg and/or a reduction in the value cp in 

presence of fillers. The natural rubber composites with fillers show a reduction in cp relatively to the 

pure natural rubber, which progressively decreases further as a function of higher filler 

concentrations: the reduction is the highest for the SMI nanoparticles (to a final value of cp = 0.3996 

J/(g°C)), the lowest for the talc fillers (to a final value of cp = 0.4510 J/(g°C), and intermediate for the 

kaolinite fillers (to a final value of cp = 0.4142 J/(g°C). This would indicate that the fillers assist in 

creating cross-links between the molecular chains of the natural rubber preventing molecular 

mobility during the glass transition. The  nanoparticles are indeed most efficient in creating cross-

links, likely due to the surface chemistry of the nanoparticles with residual free amic acid groups and 

imidized moieties as detailed before [5], in combination with the nanoscale surface area effect.    

The effects of fillers on the structure of natural rubbers are further illustrated from the ATR-FTIR 

spectra shown in Figure 3. The spectra both confirm the presence of the fillers in different 

concentrations in parallel with some changes in the natural latex molecular structure. The FTIR 

spectra of natural rubbers are characterized by presence of characteristic bands for cis-1,4-

polyisoprene including 2960 cm-1 (CH3 symmetric stretching), 2913, 2852 cm-1 (CH2 asymmetric and 

symmetric stretching), 1655 (-C=C-), 1445 cm-1 (CH3 and CH2 bending), 1376 cm-1 (CH3 bending), 842 

cm-1 (=CH wagging). Apart from that, the spectra of different fillers are characterized by separate 

absorption bands characteristic for SMI nanoparticles: 1713 cm-1 (C=O, imide), 701 cm-1 (aromatic, 

styrene); kaolinite: 500 to 700 cm-1 (Si-O), 900 cm-1 (OH deformation), 1000 cm-1 (Si-O stretching) 3600 

cm-1 (OH stretching, Al – OH stretching); and talc: 672 cm-1 (Si-O-Si symmetric stretching), 1017 cm-1 

(Si-O-Si asymmetric stretching), and sharp band at 3670 cm-1 (OH).  

The related spectral bands of the fillers are independent of the natural rubber matrix and 

progressively increase at the higher filler concentrations. A single interaction between the SMI 

nanoparticles and the matrix can be seen at the shoulder peak around 1360 cm-1: the band is present in 

pure natural rubbers and gradually intensifies with the higher SMI concentrations, while the band did 

not appear in single SMI nanoparticles. The latter might indicate physical interactions between the SMI 

nanoparticles and the CH3 side groups of the natural rubber polymer chain. In addition, an intensified 

broad peak over the 3200-3500 cm–1 region is most pronounced for the SMI nanoparticle fillers and less 

present for the kaolinite and talc fillers. This absorption band might be related to the presence of 

hydroxyl groups that appear to be generated through interactions between the natural rubber with the 

SMI nanoparticles. On the other hand, no direct changes in the -C=C- double bonds were observed due 

to chemical cross-linking reactions for neither of the fillers. In conclusion, it can be confirmed that 

strongest physical interactions between the natural rubber matrix and SMI nanoparticles are observed. 
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Figure 3. FTIR spectra of natural rubber composites with different concentrations of fillers, (a) SMI 

nanoparticles, (b) Kaolinite, (c) Talc (same color legend for overview spectra and details at the right).  

3.3 Paper coating properties 

The morphology of paper surfaces with natural rubber composite coatings are illustrated in Figure 4, 

representing top-views of the different coating compositions. The pure natural rubber coating was fully 

flat and covered the paper surface as a smooth polymer film. The aspect of kaolinite fillers is observed 

as a homogeneous and smooth distribution over the coating surface with progressively more dense 

coverage at the higher concentrations, while they bring good coating density and likely some 

topographical roughness effects. The SMI nanoparticles are homogeneously distributed within the 

coating causing the creation of small micrometer-scale domains. The talc particles are much rougher 

and are densely present at the surface in an inhomogeneous distribution over the surface. Due to the 

platelet morphology of talc particles, they are randomly oriented at the surface either perpendicularly 

sticking out or parallel embedded in the surface.  
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Figure 4. SEM evaluation of natural rubber coatings on paper with different filler types and 

concentrations (magnification ×4000 for all images). 

The results of surface properties including wetting and adhesive properties are summarized in 

bar charts of Figure 5. The static contact angle values of water and diiodomethane in Figure 5a show 

slight and consistent variations among the different coating types and filler concentrations, relatively 

to the pure natural rubber coating. The contact angles remained stable on the coatings for about 15 

seconds, except for the pure natural rubber, as the homogeneity and coverage of the coating was not 

perfect and fully continuous for the pure natural rubber coating. The exposure of paper fibers at the 

surface created voids for flow of the water through the coating, while the presence of fillers improved 

the coating coverage and density, providing better bulkiness compared to the pure natural rubber. 

The original rubber coating has a water contact angle of 95° being in the hydrophobic range. The 

presence of kaolinite gradually increases the coating hydrophobicity, likely due to the hydrophobic 

properties of the fillers in combination with the creation of some additional surface roughness seen 

in the microscopic images. The talc particles are hydrophilic and their properties consequently 

prevail while exposed at the surface, resulting in a gradual decrease in hydrophobicity with the 

higher talc concentrations. The hydrophobic properties of SMI nanoparticles are beneficially 

exploited while added in different concentrations, rising up to a maximum water contact angle of 

110°. While the water contact angle indicates the polar interactions, the diiodomethane is an apolar 

liquid an often show opposite trends to the water contact angles. 
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Figure 5. Surface properties of natural rubber coatings on paper substrates, (a) static contact angles 

for water (blue bars) and diiodomethane (orange bars), (b) calculated work of adhesion Wa, (c) 

experimental adhesion force from loop test.  

The adhesion between coated surfaces of natural rubber composites has been studied in the 

frame of the tendency for self-adhesion of natural rubber materials. The work of adhesion Wa = L ( 1 

+ cos  ) with L = liquid tension and taking into account the contact between similar rubber coating 

materials, can theoretically be calculated from the water and diiodomethane contact angles. The 

calculated values are represented in Figure 5b, where it can be noticed that the predicted adhesion 

varies for the different coating types. The theoretical adhesion is highest for the pure natural rubber 

and is lower in presence of filler materials: with increasing filler concentrations, the adhesion 

gradually decreases in presence of kaolinite fillers and SMI nanoparticles, while the adhesion 

increases in presence of talc particles. This can indeed be related to the hydrophobic effect of the 

kaolinite and SMI nanoparticles and the hydrophilic effect of the talc particles. The results of 

experimental adhesion measurements from a loop test with contact between similar rubber 

composite materials is represented in Figure 5c, and confirm the trends from theoretical calculations. 

From that, it is mainly revealed that the tendency for adhesion of rubber composite coatings can be 
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predicted from water contact angle measurements and is steered by the hydrophobicity of the coated 

surface.  

4. Conclusions 

Different macro- and nanoscale fillers can be homogeneously mixed with a natural rubber latex 

and applied as a paper coating. The use of hydrophobic nanoparticles show most interactions with 

the latex through interactions with the molecular side chains of the poly-isoprene, while the 

nanoparticles also provide highest hydrophobicity and reduced tendency for self-adhesion (tack). 
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