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Abstract: Bulk cobalt- and nickel-based metallic materials exhibit superior resistance to cavitation 

erosion and sliding wear. Thus, thermally deposited High Velocity Oxygen Fuel (HVOF) coatings 

seem promising for increasing the wear resistance of the bulk metal substrate. However, the effect 

of chemical composition on the cavitation erosion and sliding wear resistance of M(Co,Ni)CrAlY 

and NiCrMo coatings has not yet been exhaustively studied. In this study, High Velocity Oxygen 

Fuel (HVOF) coatings such as CoNiCrAlY, NiCoCrAlY, and NiCrMoFeCo were deposited on AISI 

310 (X15CrNi25-20) steel coupons. The microstructure, hardness, phase composition (X-ray 

diffraction, XRD) and surface morphology of the as-sprayed coatings were examined. Cavitation 

erosion tests were conducted using the vibratory method in accordance with the ASTM G32 

standard. Sliding wear was examined with the use of a ball-on-disc tribometer, and friction 

coefficients were measured. The mechanism of wear was identified with the scanning electron 

microscope equipped with an energy dispersive spectroscopy (SEM-EDS) method. In comparison 

to the NiCrMoFeCo coating, the CoNiCrAlY and NiCoCrAlY coatings have a lower wear resistance. 
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1. Introduction 

Bulk cobalt- and nickel-based metal alloys have superior resistance to both cavitation erosion 

and sliding [1–5]. Moreover, Co-, Ni- or even Fe-based overlay deposits are considered highly 

resistant to abrasion and erosion [1,2,6]. Thus, HVOF thermal spraying seems to be the next step in 

increasing the wear resistance of bulk metal substrates. Various cermet coatings systems have been 

investigated in relation to sliding, abrasive or erosion wear [7–12]. It is known that thermally sprayed 

coatings increase the wear resistance of machine and equipment components and make it possible to 

prevent or reduce various damage processes. Abrasive damage, erosion by solid particles and 

corrosion are the most frequently described damage processes in literature [13–16]. Despite the fact 

that the HVOF method is widely used for metallic or cermet coating deposition [7,9,15,17–20], the 

anti-wear properties of HVOF coatings are still being investigated. New studies on the abrasive wear 

of thermally deposited coatings are published, and even though these issues seem to be quite well-

known there are relatively few scientific reports combining both sliding and cavitation testing of 

HVOF metallic coatings. The effect of alloying composition on the cavitation erosion and sliding wear 

resistance of Ni-based coatings deposited by the HVOF method has not been exhaustively 

investigated. In comparison to other thermal spraying processes, e.g., plasma spraying or flame 

spraying, HVOF-deposited coatings exhibit low porosity and homogeneous structure. This is mainly 
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due to the low process temperature and the high speed of the particles being sprayed [14,21,22]. It is 

well known that the homogeneous structure of the material has a positive effect on its resistance to 

cavitation erosion [23,24]. Furthermore, the investigation into wear resistance is an up-to-date 

problem from the point of view of both scientific and engineering practice [8,9,20,25,26]. In this paper, 

the sliding and cavitation erosion wear resistance of NiCrMoFeCo, CoNiCrAlY and NiCoCrAlY 

coatings is investigated.  

2. Experimental 

The nominal chemical compositions of powders used for deposition of HVOF coatings are given 

in Table 1. The substrate was AISI 310 (X15CrNi25-20) with the thickness ranging from 180 to 200 µm 

and the initial roughness of deposited coatings, Ra, ranging between 4 and 6 µm. The coatings were 

examined on their top surfaces using a SEM microscope. Phase composition was estimated by the 

XRD method. Hardness was measured on the metallographic cross-sections with a nano-hardness 

tester (Anton Paar CSM Instruments) having a load of 500 mN. 

Table 1. Nominal chemical composition of feedstock powders. 

Chemical Element, wt % 

Specimen Code 

A B C 

CoNiCrAlY NiCoCrAlY NiCrMoFeCo 

Ni 32 Balanced Balanced 

Co Balanced 22 0.5 

Cr 21 17 21.5 

Al 8 12.5 - 

Y 0.5 0.5 - 

Mo - - 8.5 

Fe - - 3 

Sliding wear tests were performed by the ball-on-disc method with a tribotester from CSM 

Instruments, Switzerland, in compliance with the procedure described in [27,28]. The counter-ball 

was made of 100Cr6 steel; the applied load was 15 [N] and the sliding distance was set equal to 200 

[m]. The mass loss of the samples was estimated with an accuracy of 0.01 mg. Wear traces were first 

examined with the Dektak 150 contact profilometer (Veeco Instruments, USA) for calculating volume 

loss. After that, they were also examined with the use of a scanning electron microscope (SEM).  

Cavitation erosion tests were conducted using a vibratory rig operating under the conditions 

given in the ASTM G32 standard [29] and described in previous papers [8,30]. The stationary 

specimen test method and distilled water were used. The samples were weighed in specified time 

intervals with an accuracy of 0.01 mg. The worn areas were analyzed with the SEM microscope.  

3. Results 

3.1. Coating Characterization  

The surface morphology of the coatings is presented in Figure 1 and Figure 2. The top-view of 

the coatings indicates their lamellar microstructure and the presence of unmelted powder particles, 

porosity and oxides that are typical of thermally sprayed coatings [14,31,32]. According to the XRD 

analysis results, the coatings A and B form a γ solid solution with the structure of fcc and phases β-

(Co,Ni)Al and Cr3Ni. This is in agreement with the data reported in the literature [14,19]. The 

hardness ranges from 4.7 to 5.8 GPa, which is comparable with the literature data [19,33]. 
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Figure 1. Surface morphology of coating A, SEM. 

 

Figure 2. Surface morphology of coating C, SEM. 

3.2. Sliding Wear Results  

Sliding wear results are given in Figure 3-5 and in Table 3. The results clearly demonstrate that 

coating A has undergone the highest wear while coating C is the most resistant to wear. The friction 

coefficients are in agreement with the mass loss data, as shown in Figure 3. At the initial stage of the 

wear process, the top surface peaks of the coatings are cut out or smashed, and, subsequently, a great 

amount of debris occurs in the wear trace. The wear results are complementary with the surface 

roughness measurements of the coatings. Also, it can be observed that the wear of the C (nickel-

based) coating is much lower. 

Figure 4 shows the wear traces of M(Ni,Co)CrAlY coatings and Figure 5 shows the wear trace of 

the Ni-based coating. All wear traces show the presence of oxides (primary oxides or material oxides 

due to wear). Also, it can be observed that the wear mechanism relies on smearing the coating 
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material and, especially in the case of coating C, on low-cyclic fatigue resulting in the delamination 

of the coating material. The material removal is a result of cyclic compression and smearing of the 

HVOF-deposited material. Moreover, the observed delamination is in agreement with the splat 

dimensions indicating splat-induced detachment. Wear debris also plays an important role due to its 

smearing through the wear trace and cyclic deformation leading to a fatigue detachment of the 

coating material. 

 

Figure 3. Sliding wear results. 

Table 3. Friction coefficients of the tested coatings. 

Coating code 
Friction Coefficient 

Average SD 

A 0.97 0.07 

B 0.64 0.05 

C 0.57 0.04 

 

Figure 4. Wear trace of coating A, SEM. 
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Figure 5. Wear trace of coating C, SEM. 

3.3. Cavitation Erosion 

Cavitation erosion curves of the HVOF coatings are given in Figure 6. It can be observed that in 

comparison to M(Ni,Co)CrAlY, the C (nickel-based) coating exhibits a higher resistance to cavitation. 

The material loss of the coatings A and B is comparable, and it is twice higher than that of coating C. 

The wear mechanism in the M(Ni,Co)CrAlY-type coatings is similar and it consist in the detachment 

of loose splats and cracking induced by non-uniformities (unmelted particles, oxides and lamellae 

borders). Material erosion is followed by plastic deformation of the coating material. Figure 7 and 

Figure 8 show the cavitation-eroded surfaces of the coatings B and C. A comparison of the SEM 

images reveals the presence of plastic strains. Moreover, it can be observed that in the case of coating 

B the material is removed in massive chunks, while the C coating exhibits a much compact 

morphology and lower surface roughness, which increases its wear resistance. In contrast to coating 

C, the coatings A and B have an Ni-Co-based matrix. It seems that the deformability of nickel leads 

to an increased wear resistance of coating C. 

 

Figure 6. Cavitation erosion curves of HVOF coatings. 
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Figure 7. Cavitation-eroded surface of coating B, SEM. 

 

Figure 8. Cavitation-eroded surface of coating C, SEM. 

4. Conclusions 

The results of the study lead to the following conclusions: 

• the sliding wear resistance increases with increasing the nickel content as follows: NiCrMoFeCo 

< NiCoCrAlY < CoNiCrAlY; 

• the friction coefficient increases with increasing the Co content as follows: NiCrMoFeCo < 

NiCoCrAlY < CoNiCrAlY; 

• the resistance to cavitation erosion of the M(Co,Ni)CrAlY coatings is almost two times lower than 

that of the NiCrMoFeCo deposit; 
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• a combination of adhesive, oxidation and low-cyclic fatigue is the dominant sliding wear 

mechanism; 

• cavitation erosion damage is induced by plastic deformation of the coating material; it is initiated 

at the non-uniform areas (unmelted particles, oxides and lamellae borders) and results in the 

removal of the HVOF deposited material. 
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