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Abstract: The purpose of the work is to determine factors internal and external affecting the cooling 

energy demand of the building. During the research, the impact of weather conditions and the level 

of hotel occupancy on cooling energy, which is necessary to obtain indoor comfort conditions, was 

analyzed. The subject of research is energy consumption in the Turówka hotel located in Wieliczka 

(Southern Poland). In the article, the designer of neural networks was used in the Statistica statistical 

package. To design the network, a widely-used multilayer perceptron model with an algorithm with 

backward error propagation was used. Based on the collected input and output data, various MLP 

networks were tested to determine the relationship most accurately reflecting actual energy 

consumption. Based on the results obtained, factors that significantly affect the consumption of 

thermal energy in the building were determined and a predictive energy demand model for the 

analyzed object was presented. The result of the work is a forecast of cooling energy demand, which 

is particularly most important in a hotel facility. The prepared predictive model will enable proper 

energy management in the facility, which will lead to reduced consumption and thus costs related 

to facility operation. 

Keywords: prediction cooling energy consumption; artificial neural network; energy efficiency; 

sustainable buildings 

 

1. Introduction 

The advancement of civilization and the development of society increase the amount of time 

that a person spends indoors. Currently, in developed countries people spend up to 80–90% of their 

lives in buildings, which is why it is so important to ensure proper conditions and high indoor air 

quality. In new buildings heating, ventilation and air-conditioning systems play a crucial role due to 

high user comfort requirements. However, air treatment processes are very expensive, while the 

removal of heated air in winter causes the process itself to be unprofitable. The main task of designers 

in recent times is to reduce heating and cooling energy consumption, through the use of devices and 

systems with higher efficiency, reduce energy losses during energy distribution, as well as through 

proper management of systems. The forecasting of energy consumption in a building is particularly 

important in terms of planning, managing, and optimizing energy systems. Accurate and reliable 

heating and cooling energy forecasts for buildings can bring significant benefits to energy savings. 

The forecasting heating energy consumption is a difficult task due to numerous disturbances and 

deviations from observed trends. In the case of facilities such as a hotel, the demand for cooling and 

heating energy, in addition to meteorological factors, is determined by the hotel occupancy and user 

activity (the use of facilities on the premises, e.g., swimming pool, restaurant, conference room). 
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Building energy consumption prediction is crucial to appropriate energy management, therefore 

to improve the energy efficiency of systems and performance of the buildings. In general, methods 

for estimating and modeling energy consumption could be divided into two groups: engineering and 

data-driven approaches. The first type, use physical and thermodynamic functions to evaluate the 

energy consumption of the building or system. A data-driven approach defines the relationship 

between energy consumption and identified factors based on the historical data [1]. In recent years, 

artificial intelligence methods have become very popular. This technique is often applied to the 

prediction of energy consumption due to good accurate prediction results. Among the most popular 

data-driven prediction models using empirical approach are artificial neural networks (ANNs) and 

support vector machines (SSM) [2]. 

Artificial neural networks consist of three types of layers: input (collects data and passes them 

on), hidden (connections between neurons are searched for here, i.e., learning process takes place) 

and output (collects conclusions, analysis results). A neural network can consist of any number of 

layers. Into the first layer, unprocessed input data goes. Each subsequent layer receives data resulting 

from the processing of data in the previous layer. What the last layer produces is the so-called system 

output [3]. The simplified artificial neural network was proposed for the first time by McCulloch and 

Pitts in 1943 [4]. A schematic diagram of the multilayer feedforward neural network architecture is 

shown in Figure 1. 

 

Figure 1. Schematic diagram of multilayer feed forward neural network. 

There are many types of artificial neural networks (ANN) including backpropagation network 

(BPNN), general regression neural network (GRNN), and radial basis function network (RBFN) [3]. 

The most commonly used neural network architecture today is the Multilayer Perceptron (MLP). 

Each neuron calculates the weighted average of the inputs to it, and calculates the result using the 

transition function f and gives it to the output. There is also a shift component in each layer of MLP 

network neurons. Choosing the right number of hidden layers and the number of neurons present in 

them is an important thing for a perceptron. The choice of activation function and network learning 

method is also significant. 

Numerous interesting methods of prediction building energy consumption have been described 

in the literature [5–7]. Nowadays, widely used solutions are data-driven models applied to estimate 

electricity consumption in buildings and to analyze the energy consumption pattern [8–14]. As many 

studies [15–17] show, artificial neural networks could be useful also in the prediction of heating and 

cooling energy consumption. Zhao et al. [18] investigated the energy consumption of Variable 

Refrigerant Volume System in the office building. Authors compared three types of prediction 

models: ANN, SVM, and ARIMA (Autoregressive integrated moving average). Results showed that 

ANN model is better than the other two types. In their paper, Biswas et al. [19] proposed a prediction 
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model of residential building energy consumption. The input variables included the number of days, 

outdoor temperature, and solar radiation. The output variables are building and heat pump energy 

consumption. In a paper by Pino-Mejías et al. [20], the authors presented prediction models of the 

heating and cooling energy demands, energy consumptions, and CO2 emissions for the office 

buildings in Chile. The study shows that multilayer perceptron provides a satisfactory degree of 

accuracy in the determination of demand, consumption, and CO2 emissions. Annual energy 

consumption by HVAC systems was also predicted by Nasruddin et al. [21]. Authors used ANN 

model with the range of decision variables including cooling setpoint, supply airflow rate, window 

area, supply air temperature, etc. The university building was the subject of the study. The result 

showed that optimization of HVAC improvement influenced both for thermal comfort, as far as 

annual energy consumption. 

This paper presents an integrated approach to predict energy consumption and develop a 

predictive model using an artificial neural network. The study includes an analysis of the energy 

consumption of cooling systems based on the meteorological data and historical cooling energy data 

during the summer season. The main purpose is to create an accurate ANN model for Turówka hotel 

to estimate daily cooling energy consumption. The cooling system in the hotel is accountable for 

about 50–60% of the total building energy consumption, therefore the study focused only on the 

cooling demand [22]. 

2. Methods and Building Description 

The building studied in this paper is the Turówka hotel, located in Wieliczka, the south-central 

part of Poland near the Kraków. It is the reconstruction of a historic salt store of 1812, entered into 

the register of historical monuments. The building is under preservation maintenance, so during 

hotel refurbishing old saltworks and hotel adaptation, the mass, and dimension if the building should 

stay the same. The building materials used and window and door frames aim to recreate the structure 

as faithfully as possible. The building includes four overground floors and the basement with the 

useful floor area of the hotel section 5525.00 m2 and a capacity of 19,300 m3. The hotel has 50 double 

rooms, a restaurant for 90 people, a hotel bar for 30 people, a drink bar for 30 people, a conference 

room for 40 people and a pool. The central heating installation is powered by two low-temperature 

gas boilers with a capacity of 250 and 350 kW. Currently, the hotel uses a two-pipe central heating 

system with panel radiators and thermostatic valves. The domestic hot water is prepared in the gas 

boiler house with circulation and with heating circulation pump control. The building is equipped 

with mechanical supply and exhaust ventilation carried out by seven air handling units with rotary 

exchangers and air handling units for the kitchen with an exchanger using glycol. The coolers in the 

air handling unit (AHU) are supplied with chilled water at 8 °C/14 °C temperature parameters. The 

same cooling installation also supplies fan coil units located in hotel rooms and other rooms intended 

for guests. The hotel building and its immediate surroundings are shown in Figure 2. 

 

(a) 

 

(b) 

Figure 2. The Turówka hotel: (a) outside of the building; (b) localization of the hotel [23]. 



Proceedings 2020, 4, x FOR PEER REVIEW 4 of 12 

 

Cooling energy meters have been installed in main system areas, i.e., feed and return of the high 

and, depending on demand, low parameter of the refrigerant. Data are transmitted via a serial 

communications protocol—MODBUS RTU and stored in a recording system. Measurements are 

made using MULTICAL heat meters by Kamstrup. To ensure measurement stability, flow sensors 

were submitted to a type approval according to EN 1434 [24], which includes the 2400-h 

measurement stability test of the flow sensors. 

This paper includes an analysis of the cooling energy consumption of the hotel. In the summer 

season, the main building operating costs are related to the cooling system which ensures thermal 

comfort for users. Due to the prevailing share of cooling energy demand in total energy consumption 

in the summer season, the research was focused on providing the most accurate model for the 

prediction of cooling energy consumption. The data analyzed in this study are a daily time series 

collected from 15 May to 15 September 2019. This period is a summer season in Poland when the 

hotel cooling system is working. The data includes cooling energy consumption in the building. The 

outside temperature was measured directly at the hotel area. Other meteorological data are obtained 

from the National Research Institute—Polish Institute of Meteorology and Water Management. 

The study has been divided into four parts. Firstly, the data, including meteorological data and 

data from the analyzed building, was collected. Another step was to examine the relationship 

between cooling energy demand and the identified variables in the analyzed period. On this basis, 

the factors that may affect energy consumption have been selected. Due to the minimal impact of 

some factors as well as the practical approach to the application of prediction algorithms, only the 

most significant ones are most often used. Among ten variables: day, month, occupancy level, 

average outside temperature, minimum temperature, maximum temperature, relative humidity, 

cloud cover, precipitation, and wind speed, the last two parameters have been rejected. In the paper, 

a simplified data-driven model for the prediction the energy consumption has been presented. An 

ANN-based model was used to predict the cooling energy used in a building in the summer season. 

Figure 3 illustrates the research process. 
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Figure 3. Diagram of energy prediction process. 

In this study, three evaluation indices are used to measure the performance of the proposed 

approach, including the mean absolute error (MAE), root mean squared error (RMSE), and coefficient 

of variance (CV) [16,18,25]. Additionally, the weighted absolute percentage error (WAPE), proposed 

by other authors, was used [26]. The mathematical representation of indicates are represented in 

Equations (1)–(4): 
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 (4) 

where 𝑛 denates the entire number of observations, 𝐸𝐴 is the actual value, 𝐸𝐴
̅̅ ̅ denotes the mean of 

actual values, and 𝐸𝑃 represents the predicted value. 
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3. Results 

3.1. Preliminary Statistical Analysis 

To increase the accuracy of the prediction, the pre-selected meteorological values and data 

related to the use of the building were subjected to basic statistical analysis. During the initial 

analysis, ten parameters were identified that may affect the cooling load, including the day of the 

week, month, the minimal and maximum outside temperature during the day, average daily 

temperature, occupancy level, average daily cloud cover, wind speed, relative humidity, and 

precipitation. Statistical analysis was performed for the data presented in Table 1. 

Table 1. Identified variables. 

Variable Unit 

Day (Monday-1; Tuesday-2; Wednesday-3; Thursday-4; Friday-5; Saturday-6; Sunday-7) - 

Month (May-5; June-6; July-7; August-8; September-9) - 

Minimum temperature Tmin °C 

Maximum temperature Tmax °C 

Average temperature Tavr °C 

Occupancy level % 

Daily average cloud cover (0 oktas—completely clear sky, 8 oktas—completely overcast) okta 

Daily average wind speed m/s 

Daily average relative humidity % 

Daily average precipitation mm 

Table 2 presents descriptive statistics for each analyzed variable. Day and month are listed but 

statistics are not provided for them because these parameters represent categorical variables in the 

model. 
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Table 2. Descriptive statistics for input and output variables. 

Variable Unit Minimum Maximum Mean Median 1st Quartile 3rd Quartile 

Day - 1.00 7.00 - - - - 

Month - 5.00 9.00 - - - - 

Tmin °C 6.24 21.09 14.44 14.68 12.13 16.71 

Tmax °C 9.92 36.16 26.11 26.39 23.12 29.91 

Tavr °C 8.41 29.24 20.23 20.68 17.46 23.05 

Occupancy level % 18.90 100.00 77.64 94.90 65.10 94.30 

Cloud cover octa 0.00 8.00 4.34 4.45 2.95 5.90 

Wind speed m/s 0.90 5.50 2.69 2.50 2.00 3.20 

Relative humidity % 49.00 96.10 72.77 72.10 65.95 79.35 

Precipitation mm 0.00 39.80 2.75 0.00 0.00 1.65 

Cooling Energy kWh/day 0.00 2501.53 1227.32 1170.11 667.91 1704.64 

The analysis was based on the Pearson correlation coefficients between the studied variables 

and the predicted output. The results are summarized in Table 3. 

Table 3. Correlation coefficients for numeric variables. 

 Day Month Tmin Tmax Tavr 
Occupancy 

Level 

Cloud 

Cover 

Wind 

Speed 

Relative 

Humidity 
Precipitation 

Day 1.00          

Month 0.01 1.00         

Tmin −0.11 0.02 1.00        

Tmax 0.01 0.14 0.76 1.00       

Tavr −0.03 0.05 0.85 0.96 1.00      

Occupancy level 0.47 0.02 −0.06 −0.08 −0.07 1.00     

Cloud cover −0.15 −0.13 −0.20 −0.60 −0.57 −0.05 1.00    

Wind speed −0.17 −0.12 0.16 −0.06 0.05 −0.05 −0.03 1.00   

Relative humidity −0.03 0.09 −0.36 −0.60 −0.65 0.17 0.63 −0.17 1.00  

Precipitation −0.12 0.04 −0.12 −0.25 −0.28 0.00 0.38 0.07 0.46 1.00 

Cooling Energy −0.07 0.08 0.85 0.84 0.88 −0.01 −0.40 0.08 −0.42 −0.14 

Based on the results in the table, it was decided that in further analysis the wind speed and 

precipitation parameters, which showed the smallest relationships with the searched value, would 

be rejected. Despite the low correlation coefficient between cooling energy demand and occupancy 

level, this variable was accepted for further consideration, due to individual cooling control in guest 

rooms. 

Cooling Energy Consumption 

A regression graph with histograms presenting the relationship between energy consumption 

and the average temperature was plotted (Figure 4a). The data were ordered and divided into groups 

in specified temperature ranges. Having removed outliers and extremes, linear relationships were 

plotted in the form of box plots (Figure 4b). 
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Figure 4. Cooling energy demand depending on the average daily air temperature: (a) regression 

graph with histograms; (b) box plot with ten temperature ranges. 

The next step was to investigate the relationship between energy consumption for cooling and 

two variables with the highest correlation coefficients: average temperature and relative humidity. 

The diagram for the cooling system is shown in Figure 5. 

 

Figure 5. Cooling energy demand depending on the average daily air temperature and relative 

humidity. 

3.2. Neural Networks 

The Statistica Artificial Neural Network Package was used to prepare a predictive model. 

Multilayer perceptrons with backpropagation were performed. The number of hidden neurons, the 

hidden layer activation-functions, and output layer activation-function are selected using the 

methodology based on statistical tests and least-squares estimation. Five different networks were 

created by combining four types of activation functions and a different number of hidden neurons. 

Training Algorithm BFGS (Broyden-Fletcher-Goldfarb-Shanno) was chosen for this work. Based on 

the correlation coefficient, five models were selected and described in Table 4. 
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Table 4. Network configurations tested. 

Network 

Name 

Hidden Layer 

Activation-Function 

Number of 

Hidden Units 

Output Layer 

Activation-Function 

MLP 1 Hyperbolic tangent 9 Logistic 

MLP 2 Logistic 33 Logistic 

MLP 3 Hyperbolic tangent 9 Logistic 

MLP 4 Linear 13 Logistic 

MLP 5 Hyperbolic tangent 6 Logistic 

3.3. Performance of the Model 

Based on the above-mentioned indicators: MAE, RMSE, WAPE, CV, and correlation coefficient 

(R2), selected models were compared. The results for cooling consumption, are presented in Table 5. 

Table 5. Performance evaluation of different forecast models for cooling energy consumption. 

Indicators MLP 1 MLP 2 MLP 3 MLP 4 MLP 5 

MAE 191.18 195.78 190.82 190.11 189.00 

RMSE 242.28 242.84 243.98 239.91 239.78 

WAPE 15.58% 16.49% 15.70% 16.02% 15.53% 

CV 19.74% 19.79% 19.88% 19.55% 19.54% 

R2 0.926 0.924 0.925 0.925 0.925 

For each of the analyzed outputs, the MLP 5 model was the most accurate in modeling energy 

consumption for the full dataset. Further analysis was therefore carried out only for this model. 

Figure 6 shows the comparison between actual consumptions and forecasts for the cooling system. 

 
(a) 

 
(b) 

Figure 6. Results of the prediction model MLP 5 for cooling energy consumption: (a) Comparison of 

observed values and predicted values; (b) Comparison of measured and predicted energy 

consumption. 

4. Discussion 

In this paper, the ANN predictive model for hotel Turówka is presented. CV rate for the 

proposed models varies from 19.55% to 19.88%. Similarly, the weighted absolute percentage error for 

models ranged from 15.53% to 16.49%, and the correlation coefficient in range 0.924–0.926. Based on 

these indicators investigated for each of the analyzed systems, MLP 5 model was selected. The 

differences between the proposed models are not large, and the choice was conditioned mainly by 

lower values of the coefficients describing the prediction error. For model 5, mean absolute error was 

189 kWh/day, and weighted absolute percentage error 15.53%. The predicted results are found to be 

very close to the experimental values. For maximum and minimum values of energy consumption, 

the largest differences between the actual value and predicted value are visible. 
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Table 6 presents sensitivity coefficients, which describe the change in the system’s outputs due 

to variations in the parameters that affect the system. For each of the analyzed models, the ratio of 

network error without a given variable to the error with a set of inputs was given. A quotient of less 

than 1 means that the network works even better without a given variable, which is an obvious signal 

to remove a given independent variable from the analysis. 

Table 6. Sensitivity analysis of inputs. 

Variable MLP 1 MLP 2 MLP 3 MLP 4 MLP 5 

Day 1.00 1.02 1.02 1.05 1.02 

Month 1.09 1.01 1.01 1.02 1.01 

Tmin 2.21 1.66 1.65 2.41 1.69 

Tmax 1.16 1.18 1.18 1.25 1.18 

Tavr 1.17 2.05 2.06 1.32 1.72 

Occupancy level 0.99 1.02 1.02 1.00 1.00 

Cloud cover 1.01 1.02 1.02 1.06 1.02 

Relative humidity 0.98 1.05 1.05 1.00 1.05 

As Table 6 shows, the impact of variables on predicted value varies depending on the analyzed 

model. As mentioned before, the MLP 5 model was chosen for further analysis, for which the most 

important parameters are the minimum and maximum temperatures during the day. The occupancy 

level does not affect the values obtained. During the initial analysis, attention was paid to the 

relationship between the consumption of cooling energy and relative humidity. As the analysis 

shows, humidity is included in the model, but it is not a determining factor. The sensitivity factor 

smaller than 1 in model MLP 1, suggests that this parameter is not important in analysis. This is also 

due to the significant correlation between temperature and humidity (Table 3). 

5. Conclusions 

The HVAC system consumes a large amount of energy, especially in commercial buildings. 

Energy consumption prediction is an interesting solution for energy management building, and 

hence for saving energy and reducing operational cost. The cooling load is affected by many factors, 

including weather conditions, building operation, thermal performance, and users’ behavior. In the 

paper, a simplified data driven-model for predicting energy consumption has been presented. The 

methodology is based on the use of Artificial Neural Networks. A sensitivity analysis demonstrated 

that part of the proposed input variables initially selected offer limited contribution to the model. 

Among the ten identified parameters, eight input features were used in the proposed models. Based 

on the mentioned variables, fife ANN models were created and compared using the evaluation 

coefficients discussed above. Model MLP 5, with six hidden neurons, was chosen as the most 

appropriate and effective. External minimum, average, and maximum temperature as well as relative 

humidity were considered the most important variables in this selected model. Cloud cover, day, and 

month have less impact on the predicted values. Based on the sensitivity analysis, it was found that 

the occupancy level has no significant effect on the prediction model. For each of the output 

parameters, the predictions were good, especially in terms of average values. The biggest errors were 

noticeable for extreme values that are not completely reproduced by the model. The largest observed 

difference in the analyzed period was 596 kWh/day, which was 25% of the actual value. The best 

mapping was obtained for cooling energy. This is particularly important due to the prevailing share 

of cooling energy in the total energy load of the building during the summer period. The prediction 

task performed for the whole day is difficult due to changing conditions. To increase the accuracy of 

predictive models, the analysis could be performed based on hourly energy consumption. 
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Nomenclature 

CC Cloud cover, - 

D Day of the week, - 

EA Actual value of the energy consumption, kWh/day 

EP Predicted value of the energy consumption, kWh/day 

M Month, - 

n Number of observations, - 

OL Occupancy level, % 

P Precipitation, mm 

R2 Correlation coefficient 

RH Daily average relative humidity, % 

Tmin Daily minimum temperature, °C 

Tmax Daily maximum temperature, °C 

Tavr Daily average temperature, °C 

AHU Air Handling Unit 

ANN Artificial Neural Network 

ARIMA Autoregressive, Integrated and Moving Average 

BFGS Broyden-Fletcher-Goldfarb-Shanno 

BPNN Back Propagation Neural Network 

CV Coefficient of Variance 

GRNN General Regression Neural Network 

HVAC Heating, Ventilation, Air Conditioning 

MAE Mean Absolute Error 

MLP Multilayer Perceptron 

RBFN Radial Basis Function Network 

RMSE Root Mean Squared Error 

SSM Support Vector Machine 

WAPE Weighted Absolute Percentage Error 
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