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Abstract: In the race for energy production, supplier companies are concerned by the thermal rating 

of offshore cables installed in a J-tube, not covered by IEC 60287 standards, and are now looking for 

solutions to optimize this type of system. This paper presents a numerical model capable of 

calculating temperature fields of a power transmission cable installed in a J-tube, based on Lumped 

Element method. This model is validated against the existing literature. A sensitivity analysis 

performed using Sobol indices is then presented in order to understand the impact of the different 

parameters involved in the heating of the cable. This analysis provides an understanding of the 

thermal phenomena in the J-tube and paves the way for potential technical and economic solutions 

to increase the ampacity of offshore cables installed in a J-tube. 

Keywords: J-tube; Lumped Element Method; offshore cable; ampacity; modelling; wind energy; 

wind farms; offshore installations 

 

1. Introduction 

A J-tube is a cylindrical conduit whose role is to protect an energy transmission cable positioned 

vertically between the seabed and the offshore platform, such as a wind turbine or an oil platform. It 

takes its name from its J-shape, allowing for better insertion of the cable. 

Today, industries using this type of installation are limited by the thermal stresses to which the 

cable is subjected due to the presence of this tube alone. The IEC 60287 standards [1], [2] unfortunately 

do not take into account this type of configuration. In order to prevent the risk of degradation of the 

insulating materials inside the cable, ERA proposed in 1988 a de-rating coefficient of 0.87 to be 

applied to the admissible current (ampacity) [3], based on an experiment. However, this coefficient 

was questioned as being too severe compared to the real conditions of a J-tube at sea (wind, presence 

of water). 

Some numerical models have been developed to represent an electrical cable in a vertical tube. 

Hartlein [4] proposes a 1D model, valid in steady state, in parallel with an experimental laboratory 

model. Anders [5], [6] then took this model again, this time considering IEC 60287 standards in order 

to represent the cable, and to calculate the temperature of the electrical conductor. More recently, 

Chippendale [7], [8] proposes a 2D representation of a J-tube according to 3 sections: water section, 

air section and separate electrical phases; then proposes to solve an energy balance like Anders and 

Hartlein in each of these 3 sections, linked by mathematical refinement. In particular, he proposes a 
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study of the influence of the upper and lower sections on the emerged tube. You [9], as for him, 

proposes a numerical simulation of an air vent on the cooling of a J-tube, via Fluent, which could be 

one of the possible technical solutions, although this simulation is not compared with experimental 

measurements for validation. 

Despite the relevance of this work, none of them proposes a more thorough study of the thermal 

phenomena that take place within a J-tube. This analysis could be great to identify possible technical 

solutions for industrials. This article presents this approach. To do so, we will first present an 

improvement of the permanent 2D model of Chippendale [7], [8], which was presented at the 

international Jicable 2019 congress [10]. It is able to calculate the temperature field at any point in the 

system, based on the Lumped Element system. This method proves to be particularly useful for 

considering a power transmission cable by the IEC 60287 standards, used in work on cables installed 

in ventilated tunnels [11], [12]. This model will be validated by comparison with the results of 

Chippendale [8]. We will then use this model to perform a sensitivity analysis, based on Sobol indices 

[13]–[16], in order to highlight the parameters having the greatest influence on the thermal stresses 

of the cable, or on the contrary, to detect parameters whose effect is negligible. 

2. Configuration  

In order to create a model capable of representing the heat exchanges within it, the configuration 

can be simplified by considering the cable as centred with the pipe. Moreover, in order to validate 

our model, we use the representation of Chippendale in [8], and as shown in Figure 1. The system 

considered as 2D is divided into 3 sections: submerged where the tube encloses the cable with water, 

emerged with the presence of air between the cable and the tube, and finally the last section where 

the tube is no longer present and the three-phases cable is divided into its various phases. We also 

consider that the tube is closed at the top: there is no air exchange between the inside and the outside. 

 

Figure 1. Representation of a cable installed inside a J-tube according to previous work [8]. 

Concerning the cable, we will study a 132 kV  SL type cable with a conductor section of 

1000 mm2 , each phase insulated with XLPE. The complete parameters of the electric cable are 

presented in [8]. 

3. Numerical Model 

In the case of offshore power cables, it is necessary to find a model that can take into account the 

electrical analogy imagined in IEC 60287 [1], [2], [17]. Moreover, this model must remain relatively 
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simple so that it meets user requirements, especially in terms of speed in calculation time, through 

approximations: calculation of the exchange coefficient between the cable and the tube by correlation, 

a problem considered as 2D axisymmetric.  

That's why this work turned to the Lumped Element Method (also called Nodal method), which 

is a generalization of the electrical analogy. It will allow us a great flexibility with regard to the 

thermal behavior of our system thanks to the spatial discretization of the domain. This model could 

be used in particular in the case of energy transmission cables in ventilated tunnels [11], [12]. This 

part aims to explain the concept of this method and its application on a cable installed in a J-tube. 

3.1. Explanations 

The nodal method consists in spatially discretizing a domain into several elementary volumes 

of isotherms. To each isothermal volume 𝑉𝑖  is associated a node, representing in steady state a 

temperature considered as constant. The heat flows (conduction, convection or radiation) between 

two nodes 𝑖 and 𝑗 passes through a thermal conductance 𝐺𝑖𝑗  whose expression depends on the 

volume considered. Finally, source terms can be implemented at certain nodes to represent the heat 

generation at these same points. 

A system of algebraic equations can then be set up. By analogy with electrokinetics, we can 

interpret this set of nodes as a network allowing us to compute the temperature field at any point in 

the domain, either in 1D, 2D or 3D. 

We can then carry out an energy balance on each of the nodes. If we take into account the transfer 

modes mentioned above with the neighboring nodes, and the heat sources generated in certain 

elements, we obtain for an elementary volume 𝑉𝑖, in steady state, the Equation (1) 

0 = ∑ (𝛷𝑖𝑗
𝑐𝑜𝑛𝑑 + 𝛷𝑖𝑗

𝑐𝑜𝑛𝑣 + 𝛷𝑖𝑗
𝑟𝑎𝑑) + 𝑞𝑖𝑉𝑖𝑗   (1) 

with: 

  𝛷𝑖𝑗
𝑐𝑜𝑛𝑑 , 𝛷𝑖𝑗

𝑐𝑜𝑛𝑣 , 𝛷𝑖𝑗
𝑟𝑎𝑑 the net heat inflows into the elemental volume 

  𝑞𝑖, the volume density of energy generated and dissipated in the elemental volume 𝑉𝑖 

3.2. Application 

We can now apply this discretization to our case study. In order to validate the model, we will 

place ourselves under the same conditions as the previous work [7], [8]. More information about this 

model is available in [10]. 

3.2.1. Discretization 

The discretization scheme of Chippendale’s case is shown in Figure 2. Using the IEC 60287 

standards, the cable is modelled as such: 

 a conductive element, considered here as the centre of the cable 

 an electrical insulation, represented by the thermal resistance 𝑇1 in our model 

 a filler, 𝑇2. 

 a protective sheath surrounding the cable,  𝑇3. 
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Figure 2. System discretization using Lumped Element Method. 

Concerning the screens and the armour, they are very good thermal conductors compared to the 

elements surrounding them. We can consider them in our thermal model as infinitely thin. The 

calculation of the thermal resistances 𝑇1, 𝑇2, 𝑇3 as well as the electrical losses 𝜆1, 𝜆2 considered here 

as thermal sources, will be made in the respect of the IEC 60287 standards for this type of cable. 

In the standards, only the centre of the electrical insulation was subject to an energy balance, in 

order to take into account the dielectric losses 𝑊𝑑. Our model goes further by positioning a node in 

each of the solid elements. This will allow us to model the heat transfer by conduction in the 

longitudinal axis at the same time. Finally, contrary to previous work [11], [12], it is here extremely 

important to place a node in the conductive element of the cable, in order to model the influence of 

the different sections between them. Indeed, most of the materials used in the cable design are poor 

thermal conductors (insulation, filler, sheath …). It is then easily conceivable that the model 

developed for cables installed in a ventilated tunnel greatly underestimates the heat transfer in the 

longitudinal axis. 

Concerning the environment outside the cable, the nodal model will be modified according to 3 

configurations, respecting the work of Chippendale [7], [8]. 

In the immersed section, the water in the tube is considered as a solid, due to its good thermal 

conductivity 𝜆𝑤𝑎𝑡𝑒𝑟 . The thermal linear flux 𝜑𝑤𝑎𝑡𝑒𝑟  (Wm−1 ) is written in the Equation (2). The 

outside temperature of the tube surface 𝜃𝑜 is considered equal to the surrounding water, i.e., 10 °C. 

𝜑𝑤𝑎𝑡𝑒𝑟 =
2𝜋𝜆𝑤𝑎𝑡𝑒𝑟

𝑙𝑜𝑔(
𝐷𝑤
𝐷𝑠
)
(𝜃𝑠 − 𝜃𝑤)  (2) 

In the middle section, the tube encloses the cable with air. Because this gas has a very low 

thermal conductivity, the exchanges will then take place mainly by thermal radiation and natural 

convection. When exchanges by radiation involve only surface temperatures of the cable and the J-

tube (3)(4), the natural convection introduces the gas temperature 𝜃𝑔 between the two walls (5)(6). 

First of all, by definition of Newton’s law, the convective flow characterized by the exchange 

coefficient ℎ𝑖  results in the heat exchange between a wall and the ambient fluid. In [8], ℎ𝑖  is 

calculated from the correlation of the form (7) from [18]. 

𝜑𝑟𝑎𝑑𝑖𝑛 = 4𝐹𝑠𝑤𝜎𝐴𝑠𝜃𝑚𝑖𝑛
3 (𝜃𝑠 − 𝜃𝑤) (3) 
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𝐹𝑠𝑤 =
1

1 +
1 − 𝜀𝑠
𝜀𝑠

+
𝐴𝑠
𝐴𝑤

1 − 𝜀𝑤
𝜀𝑤

 
(4) 

𝜑𝑐𝑜𝑛𝑣𝑠 = ℎ𝑐𝑜𝑛𝑣𝐴𝑠(𝜃𝑠 − 𝜃𝑔) (5) 

𝜑𝑐𝑜𝑛𝑣𝑤 = ℎ𝑐𝑜𝑛𝑣𝐴𝑤(𝜃𝑔 − 𝜃𝑤) (6) 

ℎ𝑐𝑜𝑛𝑣 = 0.188
𝜆𝑎𝑖𝑟
𝐺𝑎𝑝

 𝑅𝑎0.322𝐻−0.238𝐾−0.442 
(7) 

Similarly to the solid elements constituting the cable, a node is placed in the centre of the pipe 

in the water and air sections, in order to model its evolution over its length. 

On the outer surface of the tube, we consider that the tube is subjected to the solar flux (8). As 

proposed in [5], [8], only half of the surface is influenced by shading. Moreover, the tube is a non-

black body, i.e., its absorptivity varies according to the incident ray’s wavelength. Therefore we take 

a radiative absorption coefficient 𝛼 = 0.4 in the calculation of the flux from the Sun, as [6]–[8]. In the 

model, it is considered that the Sun emits 𝐻𝑠𝑢𝑛 = 1000 Wm
−2 , which corresponds to the solar 

radiation on a flat plate placed orthogonally to the rays. 

𝜙𝑠𝑢𝑛 = 0.5𝛼𝐻𝑠𝑢𝑛𝐴𝑜 (8) 

Finally, in the last section, the phases of the cable are separated so that they can be connected to 

the platform. In our model, the armour and the sheath surrounding the cable disappear. The cable 

being out of the J-tube, we consider that the environment acts directly on the outer surface of a phase, 

the latter corresponding to the outer diameter of the filler 𝑇2. The same external conditions as for the 

emerged section will be applied to this surface. 

𝜑𝑟𝑎𝑑𝑜𝑢𝑡 = 4𝜎𝐴𝑜𝜃𝑚𝑜𝑢𝑡
3 (𝜃𝑜 − 𝜃𝑎𝑚𝑏) (9) 

𝜑𝑐𝑜𝑛𝑣𝑜 = ℎ𝑜𝐴𝑜(𝜃𝑜 − 𝜃𝑎𝑚𝑏) (10) 

ℎ𝑛 = 0.021
𝜆𝑎𝑖𝑟
𝐿𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑅𝑎𝐿𝑠𝑒𝑐𝑡𝑖𝑜𝑛
0.4  

(11) 

In addition, the outer surface of the tube exchanges radiation and convection with the 

surrounding environment. This then involves a new node 𝜃𝑎𝑚𝑏  the outside temperature, which is 

constant. In [8], the wind speed 𝑉𝑤𝑖𝑛𝑑 is considered as null. Convection is then only natural. The 

correlation used is written in the Equation (11). 

3.2.2. Calculations 

By performing an energy balance at the 11 nodes set up on the radial axis, at the height 𝑘, we 

then obtain the following system of 11 equations, based on Figure 2, for the air section. A similar set 

of equations, not detailed here, is derived for the separated phases section and for the water section. 

0 = 𝐺12(𝜃2,𝑘 − 𝜃1,𝑘) + 𝐻𝐶𝑜𝑟𝑒(𝜃1,𝑘+1 + 𝜃1,𝑘−1 − 2𝜃1,𝑘) (12) 

0 = 𝐺12(𝜃1,𝑘 − 𝜃2,𝑘) + 𝐺23(𝜃3,𝑘 − 𝜃2,𝑘) +𝑊𝑐 (13) 

0 = 𝐺23(𝜃2,𝑘 − 𝜃3,𝑘) + 𝐺34(𝜃4,𝑘 − 𝜃3,𝑘) + 𝐻𝐼𝑛𝑠𝑢𝑙(𝜃3,𝑘+1 + 𝜃3,𝑘−1 − 2𝜃3,𝑘) +𝑊𝑑 (14) 

0 = 3𝐺34(𝜃3,𝑘 − 𝜃4,𝑘) + 𝐺45(𝜃5,𝑘 − 𝜃4,𝑘) + 3𝑊𝑠 (15) 

0 =  𝐺45(𝜃4,𝑘 − 𝜃5,𝑘) + 𝐺56(𝜃6,𝑘 − 𝜃5,𝑘) + 𝐻𝐹𝑖𝑙𝑙𝑒𝑟(𝜃5,𝑘+1 + 𝜃5,𝑘−1 − 2𝜃5,𝑘)  (16) 

0 = 𝐺56(𝜃5,𝑘 − 𝜃6,𝑘) + 𝐺67(𝜃7,𝑘 − 𝜃6,𝑘) +𝑊𝑎 (17) 
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0 = 𝐺67(𝜃6,𝑘 − 𝜃7,𝑘) + 𝐺78(𝜃8,𝑘 − 𝜃7,𝑘) + 𝐻𝑆𝑒𝑟𝑣(𝜃7,𝑘+1 + 𝜃7,𝑘−1 − 2𝜃7,𝑘) (18) 

0 = 𝐺78(𝜃7,𝑘 − 𝜃8,𝑘) + 𝐺𝑟𝑎𝑑𝑖𝑛(𝜃9,𝑘 − 𝜃8,𝑘) + 𝐺𝐶𝑜𝑛𝑣𝑠(𝜃𝑔,𝑘 − 𝜃8,𝑘) (19) 

0 = 𝐺910(𝜃10,𝑘 − 𝜃9,𝑘) + 𝐺𝑟𝑎𝑑(𝜃8,𝑘 − 𝜃9,𝑘) + 𝐺𝐶𝑜𝑛𝑣𝑤(𝜃𝑔,𝑘 − 𝜃9,𝑘) (20) 

0 = 𝐺910(𝜃9,𝑘 − 𝜃10,𝑘) + 𝐺1011(𝜃11,𝑘 − 𝜃10,𝑘) + 𝐻𝑇𝑢𝑏𝑒  (𝜃10,𝑘+1 + 𝜃10,𝑘−1 − 2𝜃10,𝑘) (21) 

0 =  𝐺1011(𝜃10,𝑘 − 𝜃11,𝑘) + (𝐺𝑟𝑎𝑑𝑜𝑢𝑡 + 𝐺𝐶𝑜𝑛𝑣𝑜𝑢𝑡)(𝜃𝑎𝑚𝑏,𝑘 − 𝜃11,𝑘) + 𝜙𝑠𝑢𝑛 (22) 

The thermal conductances 𝐺𝑖𝑗 are characteristic of the conduction taking place within the solid 

elements, between two nodes located on the radial axis, and are expressed in WK−1. They involve 

the space step 𝑑𝑧, characteristic of the distance between two nodes on the longitudinal axis. The 

conductances in the electrical conductor are expressed as 𝐺12, while the other conductances will be 

the inverse of the thermal resistances presented by the IEC 60287 standards [1], [2] 𝐺𝑖𝑗𝐼𝐸𝐶. A node is 

placed in the middle of each of the elements 𝑇2, 𝑇3, and not only within the electrical insulation 𝑇1. 

We take the same representation of the thermal resistance of IEC 60287, simply dividing it by two 

(24). 

𝐺12 =
2𝜋𝜆𝑐𝑜𝑟𝑒𝑑𝑧

𝑙𝑜𝑔 (
𝑟𝑐𝑜𝑟𝑒
𝑟𝑐𝑜𝑟𝑒/2

)
 

(23) 

𝐺𝑖𝑗𝐼𝐸𝐶 =
2𝑑𝑧

𝑇𝑛𝐼𝐸𝐶
 

(24) 

Concerning the axial conductances 𝐻𝑖 , present only in the solid parts of the system (cable and 

tube), we can write them as follows (24), the index i representing the central node to the solids and 

𝑟𝑖 the corresponding radius from the centre of one core: 

𝐻𝑖 =
𝜆𝑖𝜋(𝑟𝑖+1

2 − 𝑟𝑖−1
2 ) 

𝑑𝑧
 

(25) 

It is then possible to reduce these 11 equations into one (26). We can then solve this equation by 

iterating on the height 𝑘 in order to determine 𝜽 (27), the temperature matrix, with in row the radial 

nodes and in columns the axial nodes. 𝜃𝑘 representing the column of 𝜃 of index 𝑘. 

0 = (𝑮𝒌 − 𝑨𝒌 − 𝑮𝒂𝒎𝒃𝒌 − 𝟐𝑯𝒌). 𝜃𝑘 + 𝑨𝒌. 𝜃𝑔𝑎𝑠𝑘 + 𝑮𝒂𝒎𝒃𝒌. 𝜃𝑎𝑚𝑏𝑘 +𝑯𝒌. (𝜃𝑘+1 + 𝜃𝑘−1) + 𝜙𝑘  (26) 

𝜽 = (

𝜃1,1 ⋯ 𝜃1,𝑛𝑘
⋮ ⋱ ⋮

𝜃11,1 ⋯ 𝜃11,𝑛𝑘

) 
(27) 

Furthermore, 𝑮𝒌 is the matrix of thermal conductances between all nodes positioned on a radial 

axis. This matrix, of the form presented in Equation (28), is tri-diagonal. It is nevertheless in this case 

not symmetrical because of the presence of the 3 phases: 3𝐺34 (14). It also takes into account the 

radiative conductance 𝐺𝑟𝑎𝑑𝑖𝑛 which translates the exchanges by radiation between the cable and the 

tube. 

𝑮𝒌 =

(

 
 
 
 
 

−∑𝐺(𝑖−1)𝑗
𝑗

𝐺(𝑖−1)(𝑗+1) 0

𝐺𝑖(𝑗−1) −∑𝐺𝑖𝑗
𝑗

𝐺𝑖(𝑗+1)

0 𝐺(𝑖+1)(𝑗−1) −∑𝐺(𝑖+1)𝑗
𝑗 )

 
 
 
 
 

 

(28) 

3.2.3. Comparison with Previous Work 
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Once our model is functional, we compare it to the results obtained by Chippendale in his article 

[8], taking care to use the same parameterization. 

Temperature differences on the water section and separate phases section are most certainly due 

to the inaccuracies of assumptions made with [8]. However, we can affirm that the good concordance 

of the results allows us to validate our model. 

Moreover, it is important to note that the use of the nodal method in this configuration allows 

us to connect by discretization the 3 sections imagined by [8], whereas in their work, these transitions 

are calculated by mathematical extrapolation. It is then quite possible by this method to implement 

in the model a parameterization varying with the height, such as the temperature stratification or the 

evolution of natural convection towards turbulent regimes. 

4. Sensibility Analysis 

Now that we have a validated model, it is now interesting to know the parameters whose 

influences are major or on the contrary negligible. This study thus allows us to understand in detail 

the influence of each parameter on the thermal stresses that a cable undergoes in a J-tube. From this 

study, it will be possible to define the elements requiring particular attention in order to improve the 

cable ampacity as much as possible. In the same way, this study opens the way to future technical 

solutions that can be envisaged for companies. 

4.1. Definition of Study Parameters 

The selection of the parameters to be studied through this analysis must follow a certain 

criterion: to master the interval domain of each parameter. Thus, we will not select the elements for 

which we do not know the possible variations (elements constituting the cable, skin effect, proximity 

effect …). The chosen parameters are presented in Table 1.  

To carry out this sensitivity study, we will focus on the maximum temperature obtained by the 

nodal method (Figure 3), corresponding to one of the electrical conductors of the cable, halfway up 

the air section. This temperature defines the ampacity of the cable, it is therefore appropriate to study 

its sensibility. We will then observe its variation according to the study parameters. In order to speed 

up the calculation time, we change our 2D model to 1D. To do so, we keep only the calculation in air 

section (Equation (26)), by removing the dependencies according to the height 𝑘 and the matrix of 

longitudinal conductances 𝐻𝑘 from the reduced equation. 

 



Energies 2020, 12, x FOR PEER REVIEW 8 of 16 

 

Figure 3. Comparison of our model (Lumped Element Method) with previous work [7], [8] for 

validation. 

Table 1. Studied parameters for sensibility analysis. 

Parameters Min Max Unity 

Gap 0.05 0.40 m 

𝜀𝑐𝑎𝑏𝑙𝑒  0.4 1 / 
𝜀𝑇𝑢𝑏𝑒𝑖𝑛𝑡  0.4 1 / 
𝜀𝑇𝑢𝑏𝑒𝑜𝑢𝑡  0.4 1 / 

𝛼 (𝛼𝑡𝑢𝑏𝑒𝑜𝑢𝑡) 0.2 0.8 / 

ℎ𝑐𝑜𝑛𝑣   2 10 𝑊𝑚2𝐾−1 

𝜙𝑠𝑢𝑛 0 1000 𝑊.𝑚−2 

𝜃𝑎𝑚𝑏  10 50 °𝐶 

𝑉𝑤𝑖𝑛𝑑  0 10 𝑚. 𝑠−1 

4.2. Simple Parametric Study: "One-At-a-Time" 

We can first study the influence of each parameter individually on the output temperature, one 

by one, by setting all other parameters to a reference. This is an archaic technique, but it is still quite 

efficient. It is called One-At-a-Time (OAT). It allows to have a first feedback of the influence of the 

parameters on the model and its output.  

For this OAT analysis, we focus on non-meteorological parameters only. Indeed, these ones can’t 

be controlled, it is therefore appropriate to not consider them for this first analysis. However, they 

will be studied in the next section because of their “interactions” effect on the mathematical model. 

This term will be explained at the end of this section. Furthermore, we decide to study ℎ𝑐𝑜𝑛𝑣  in order 

to observe the natural convection influence on the cable temperature. There is reason to believe that 

convection inside an enclosed J-tube is much more complex than a simple correlation (7): temperature 

stratification, turbulences, air leaks … Therefore it is considered in this first OAT analysis an arbitrary 

exchange coefficient ℎ𝑐𝑜𝑛𝑣  from 2 Wm−2K−1 to 10 Wm−2K−1 (natural convection range).  

Figure 4 shows the results of this OAT analysis. For each parameter evolving on their range that 

we have defined in the Table 1, we obtain the evolution of the temperature for each case. Each arrow 

represents the increasing evolution of the studied parameter. We have also placed on this figure the 

temperature value of the reference conductor obtained in the Figure 3, as determined in [8]. 
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Figure 4. Temperature evolution using OAT analysis. 

From this graph, we can draw some conclusions: 

 An increase in Gap between the cable and the tube would improve the ampacity of the cable. It 

is clear that increasing the gap would improve exchanges by natural convection in particular. 

 The conductor's temperature is minimal when the emissivities 𝜀 of the surfaces are maximal. 

However, it should be noted that lower surface emissivity also leads to much higher 

temperatures. It would therefore be important to precisely characterize these emissivities. 

 The influence of the Sun is extremely important here, and modifying the outer surface of the 

tube to allow it to reflect the Sun’s rays as much as possible would considerably increase the 

ampacity of the cable.  

 Better exchanges by convection inside the tube would undeniably allow better cooling of the 

cable. Here we have limited ourselves to natural convection ( 2 Wm−2K−1 < ℎ𝑖𝑛𝑡 <

10 Wm−2K−1), but it is obvious that allowing forced convection, by creating air circulation for 

example, would greatly improve the ampacity of the cable [9]. 

 Also, it would be interesting to know how important could be the improvement of the cable 

temperature if we had the ideal configuration, as p = 0.4 m ;  εcable = 1 ;  εtubeint =

1 ; εtubeout = 1 ;  α = 0.2. For this configuration, we obtain a core temperature of 80.16 °C, 

which is an improvement of 11.3% compare to the temperature obtained with the configuration 

described in [8]. It is important to note that α is the most influential here: for the configuration 

Gap = 0.4m ;  εcable = 1 ;  εtubeint = 1 ; εtubeout = 1 ;  α = 0.4, we obtain a core temperature 

of 87.57 °C i.e., a 3.1% improvement. 

This study by OAT allowed us to understand the influence of each parameter on the temperature 

of the conductor in the emerged section. However, it turns out that each of these variations was 

obtained by setting all the other parameters to fixed values. This has the consequence of masking the 

interaction effects between the parameters in the model: 𝛽1𝑥 𝛽2. In other words, the effects observed 

in Figure 4 may be different if another reference is chosen… 

4.3. Sobol Indices 

We must then find a method to obtain the influence of each parameter on the model, while 

considering the interactions between each parameter: this is a so-called global analysis, as opposed 

to the OAT which is a local analysis. In addition, we have at our disposal a fast model in resolution 

time. That is why we turned to the Sobol Indices. 

4.3.1. Explanation 

Let our model be such that 𝑋1, 𝑋2, … , 𝑋𝑝 are the input parameters and 𝑌 is its output value. In 

order to appreciate the influence of the parameter 𝑋𝑖 on 𝑌, it is possible to study the value of the 

variance of 𝑌 according to 𝑋𝑖, 𝑉(𝐸[𝑌|𝑋𝑖]). Thus, this quantity will be more important as the variable 

𝑋𝑖 will be important vis-à-vis the variance of Y, V(Y). In order to use a normalized indicator, we can 

define the sensitivity index of Y according to 𝑋𝑖: 

𝑆𝑖 =
𝑉(𝐸[𝑌|𝑋𝑖])

𝑉(𝑌)
< 1 

(29) 

This index is called the First Order Sensitivity Index by Sobol [14]. It quantifies the sensitivity of 

Y relatively to 𝑋𝑖, or the portion of variance of Y due to the variable 𝑋𝑖 alone. 

In order to consider the interaction effects between variables, let us introduce the variance 

decomposition theorem, which expresses the fact that the total variance of Y is the sum of the main 

effects of each variable 𝑉𝑖 and the interaction terms 𝑉𝑖𝑗 , 𝑉𝑖𝑗𝑘  … 

𝑉(𝑌) =∑𝑉𝑖 + ∑ 𝑉𝑖𝑗 +⋯+∑𝑉𝑖…𝑝
1<𝑖≠𝑗<𝑝

𝑝

𝑖=1

 
(30) 
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Thus, from this decomposition, it is then possible to calculate the sensitivity indices of order 2 
𝑉𝑖𝑗

𝑉
, order 3 

𝑉𝑖𝑗𝑘

𝑉
, etc. … The interpretation of these indices is relatively easy: their sum is equal to 1 

and the larger the index (close to 1), the greater the influence of the variable. However, when the 

number 𝑝 of variables becomes too large, it is difficult to estimate all sensitivity indices. Homma 

and Saltelli [19] then introduces total sensitivity index which expresses the total sensitivity of the 

variance of Y according to 𝑋𝑖 (sensitivity to the variable alone and to the interactions of this same 

variable with the other variables). From the variance decomposition previously presented (30), we 

can express the total sensitivity index as: 

𝑆𝑇𝑖 = 1 −
𝑉(𝐸[𝑌|𝑋~𝑖])

𝑉(𝑌)
 

(31) 

4.3.2. Estimation of Sobol Indices by Monte Carlo Method 

First of all, it is important to explain the Monte Carlo method. To keep it simple, it consists in 

approaching a deterministic value Z as the expectation of the values 𝑧𝑖  obtained from a random 

sample 𝑥𝑖 of size N, such as: 

𝑧𝑖 = 𝑓(𝑥𝑖)   1 ≤ 𝑖 ≤ 𝑁 (32) 

�̂� =
1

𝑁
∑𝑧𝑖

𝑁

𝑖=1

 
(33) 

The convergence of 𝑍 ̂ to Z is provided by the strong law of large numbers, which ensures that 

the larger the sample size N, the closer the Monte Carlo estimate will get to its deterministic value, 

with a convergence rate of O(𝑁−1/2). 

Let us now consider a sampling, of size N such that the p input variables of our model (𝑋1, … , 𝑋𝑝) 

are written: 

𝑋(𝑁) = (𝑥𝑘,1, 𝑥𝑘,2, … , 𝑥𝑘,𝑝)𝑘=1…𝑁 (34) 

We can then write the Monte Carlo estimate of the expectation of Y, E[Y], and the variance of Y, 

V(Y), such as: 

�̂�(𝑌) =
1

𝑁
∑𝑓(𝑥𝑘1, 𝑥𝑘2, … , 𝑥𝑘𝑝)

𝑁

𝑘=1

 
(35) 

�̂�(𝑌) =
1

𝑁
∑𝑓2(𝑥𝑘1, 𝑥𝑘2, … , 𝑥𝑘𝑝) − �̂�[𝑌]

2

𝑁

𝑘=1

 
(36) 

The estimation of Sobol sensitivity indices requires the conditional variance expectation 

estimation. The estimation of first-order sensitivity indices (29) consists of estimating the quantity: 

𝑉(𝐸[𝑌|𝑋𝑖]) = 𝐸[𝐸[𝑌|𝑋𝑖]
2] − 𝐸[𝐸[𝑌|𝑋𝑖]]

2
= 𝑈𝑖 − 𝐸[𝑌]

2 (37) 

Sobol proposes to estimate the quantity 𝑈𝑖, i.e., the expectation of the square of the expectation 

of Y conditionally at 𝑋𝑖 by varying between the two calls to the function 𝑓 all the variables except 

the variable 𝑋𝑖. This requires two samples of random realizations of the input variables, noted here 

𝑋(𝑁)
(1)

 and 𝑋(𝑁)
(2)

. The variance of Y, in (29), is normally calculated as defined in (36). 

�̂�𝑖 =
1

𝑁
∑𝑓 (𝑥𝑘1

(1)
, … , 𝑥𝑘(𝑖−1)

(1)
, 𝑥𝑘𝑖
(1)
, 𝑥𝑘(𝑖+1)
(1)

, … , 𝑥𝑘𝑝
(1)
)

𝑁

𝑘=1

𝑥 𝑓 (𝑥𝑘1
(2)
, … , 𝑥𝑘(𝑖−1)

(2)
, 𝑥𝑘𝑖
(1)
, 𝑥𝑘(𝑖+1)
(2)

, … , 𝑥𝑘𝑝
(2)
) 

(38) 
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(1)
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)

𝑁
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(2)
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(2)
, 𝑥𝑘𝑖
(2)
, 𝑥𝑘(𝑖+1)
(2)

, … , 𝑥𝑘𝑝
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(39) 

Concerning the total order Sobol index, we can write the variance of Y according to all 

parameters except 𝑋𝑖, presented in the (31), such as: 

𝑉(𝐸[𝑌|𝑋~𝑖]) = 𝐸[𝐸[𝑌|𝑋~𝑖]
2] − 𝐸[𝐸[𝑌|𝑋~𝑖]]

2
= 𝑈~𝑖 − 𝐸[𝑌]

2  (40) 

In order to calculate 𝑈~𝑖, we apply the same method as for 𝑈𝑖, but here we vary only the 𝑋𝑖 

parameter: 

�̂�~𝑖 =
1

𝑁
∑𝑓 (𝑥𝑘1

(1)
, … , 𝑥𝑘(𝑖−1)

(1)
, 𝑥𝑘𝑖
(1)
, 𝑥𝑘(𝑖+1)
(1)

, … , 𝑥𝑘𝑝
(1)
)

𝑁

𝑘=1

𝑥 𝑓 (𝑥𝑘1
(1)
, … , 𝑥𝑘(𝑖−1)

(1)
, 𝑥𝑘𝑖
(2)
, 𝑥𝑘(𝑖+1)
(1)

, … , 𝑥𝑘𝑝
(1)
) 

(41) 

Thus, using a Monte Carlo sample size of N, we then need 2N simulations of our model, 𝑓, to 

obtain one sensitivity index (1st order or total) for a parameter 𝑋𝑖, since this estimation requires two 

sets of randomly obtained samples. Therefore, estimating the 1st and total order sensitivity indices 

requires 𝑁(2𝑝 + 1) calls. In the case of large discrepancies between these two indices, then the 

indices of higher order than 1 should be estimated in order to have a more accurate visualization of 

the sensitivity of the model with respect to the input parameters. Otherwise, the effect of the input 

variables will be mainly first-order and it will not be useful to look at the intermediate-order indices. 

Here, a sample size N of 2000 will be sufficient to estimate the indices for our set of parameters, 

the model being fast enough to run. However, in order to estimate the confidence interval of these 

indices, it is illusory to want to use such a sample size in a reasonable time. An estimation by boostrap 

then seems more suitable. 

4.3.3. Uncertainty Assessment by Boostrap Method 

The boostrap method is a technique to quantify the sensitivity of the output values (standard 

deviation, confidence interval, mean, ...) from the original sample, through the statistical analysis of 

sub-samples. 

In order to be more precise, this process is to create random sub-samples from the realizations 

sample and, for each of the sub-samples, evaluating the desired value, here the Sobol indices. From 

these sub-samples, we can then derive a statistical analysis such as the variance or the mean, or as far 

as we are concerned: a confidence interval of 95%. 

The application of this method to the model is explained in the next section. 

4.3.4. Application 

Now that we have defined the elements necessary to calculate the Sobol Indices, we can now 

apply this methodology to our sensitivity study on the nodal model. 

From the intervals of the parameters to be studied, defined in the Table 1, we proceed to a 

random sampling of these parameters, included in their respective interval. We take N = 2000. 

Nevertheless, it turns out that the precision of value estimates by Monte Carlo method depends on 

the sampling as explained previously. With a fixed sample size, we decided to carry out a sampling 

such that the dispersion of the sample is as uniform as possible, in order to take into account the 

greatest number of possibilities of input values. This estimation method is then called Quasi Monte 

Carlo method, based on a low-discrepancy sampling. To do this, we choose a sampling distribution 

using Sobol sequences. The distinction between these two samples is shown in Figures 5 and 6. 
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Figure 5. Randomize sampling using uniform law. 

 

Figure 6. Quasi-random sampling using Sobol sequence. 

Based on the sampling carried out for each parameter, we perform a statistical analysis using 

the boostrap method. To do so, we randomly take a subsample of the realizations sample and 

calculate from it the first-order and total-order Sobol indices, according to (38) (41). We replicate these 

calculations for a given number of sub-samples. Here, we choose 2000 sub-samples, each with a size 

of 1500. We voluntarily choose a large sample size with respect to the initial sample in order to reduce 

the confidence interval as much as possible. Once all the calculations have been performed, we obtain 

for each study parameter an estimation of the Sobol indices as presented in the Figure 7. 
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Figure 7. Sobol indices estimation using Boostrap method. 

From this boostrap method, we calculate for each parameter and each order the mean and the 

95% confidence interval. The results are presented in Figure 8 and in Table 2. 

 

Figure 8. Sobol indices. 

Firstly, the small difference between first-order indices and total orders indicates that parameter 

interaction phenomena have little influence on the sensitivity of the model. Consequently, it will not 

be necessary to calculate intermediate-order indices afterwards. 

Secondly, we can observe the dominance of the influence of outside temperature 𝜃𝑎𝑚𝑏  on the 

cable temperature. On the other hand, its large value leads to a decrease in the other Sobol indices 

explained by the decomposition of the variance (30). In order to study in more detail the influence of 

the other parameters on the cable temperature, we calculate the Sobol indices with the exception of 

𝜃𝑎𝑚𝑏 , presented in Figure 9 and Table 2. 
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Figure 9. Sobol indices for each parameters except 𝜽𝒂𝒎𝒃. 

Table 2. Value table of Sobol indices: mean (95% confidence interval: min, max). 

 Sobol Indices 

 With 𝜃𝑎𝑚𝑏  Without 𝜃𝑎𝑚𝑏  

Parameters 1st order Total order 1st order Total order 

Gap 0.021 (0, 0.069) 0.024 (0.014, 0.035) 0.045 (0, 0.10) 0.062 (0.044, 0.080) 

𝜀𝑐𝑎𝑏𝑙𝑒  0.11 (0.059, 0.16) 0.11 (0.088, 0.13) 0.28 (0.23, 0.33) 0.30 (0.26, 0.33) 

𝜀𝑇𝑢𝑏𝑒𝐼𝑛 0.019 (0, 0.068) 0.020 (0.010, 0.030) 0.034 (0, 0.089) 0.050 (0.034, 0.065) 

𝜀𝑇𝑢𝑏𝑒𝑂𝑢𝑡  0.006 (0, 0.058) 0.006 (0, 0.014) 0.003 (0, 0.057) 0.014 (0, 0.030) 

𝜙𝑠𝑢𝑛 0.087 (0.034, 0.14) 0.10 (0.082, 0.13) 0.22 (0.16, 0.27) 0.27 (0.23, 0.32) 

𝛼𝑡𝑢𝑏𝑒𝑜𝑢𝑡  0.033 (0, 0.083) 0.044 (0.028, 0.060) 0.074 (0.020, 0.12) 0.11 (0.084, 0.14) 

𝑉𝑤𝑖𝑛𝑑  0.090 (0.038, 0.14) 0.10 (0.076., 0.12) 0.22 (0.17, 0.27) 0.27 (0.22, 0.30) 

𝜃𝑎𝑚𝑏  0.62 (0.58, 0.65) 0.62 (0.57, 0.66) / / 

5. Discussion 

From these new results, we can observe that meteorological phenomena such as the Sun, the 

wind and the ambient temperature have a major influence on the thermal behaviour of the cable 

within the J-tube. A continuous measurement of their values would therefore be essential in order to 

correctly control the heating of the cable, and consequently its ampacity. 

One notes then the emissivity of the cable 𝜀𝑐𝑎𝑏𝑙𝑒 , has a significant influence on its heating. We 

saw in Figure 4 that increasing 𝜀𝑐𝑎𝑏𝑙𝑒  leads to weak improvements. Nevertheless, with the 

calculation of the Sobol index, we can affirm that an accurate assessment of its emissivity is highly 

recommended. Indeed, this value of 0.9, used in [3]–[5], [7], [8], can be questioned. A more rigorous 

estimation would allow a more accurate evaluation of the temperature of the cable conductor, used 

in the calculation of the ampacity. In contrast, we observe that the influence of tube’s surfaces 

emissivity 𝜀𝑡𝑢𝑏𝑒𝑖𝑛 , 𝜀𝑡𝑢𝑏𝑒𝑜𝑢𝑡  is relatively low. Thus, we can say that the choice of the type of J-tube 

(plastic or iron) is not significant, in order to increase the current ampacity of the cable. However a 

better definition of these values could improve slightly the numerical model. 

The solar absorptivity of the outside surface 𝛼 is relatively influential, but unlike the latter, an 

optimization of this parameter could greatly improve the cable's ampacity. Similarly, accurate 

characterization is necessary in order to build a viable numerical model for industrial uses. 
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Finally, we can observe that the gap between the cable and the tube has a relatively low influence 

on core temperature. Here, the gap and the exchange coefficient inside the tube ℎ𝑐𝑜𝑛𝑣  are strongly 

linked: increasing the distance between the cable and the tube will allow more air circulation which 

would result in a reduction of the cable temperature. However it is clear here that increasing the gap 

will not lead to more noticeable convection, due to the correlation (7). Nevertheless this correlation 

should be questioned, natural convection between concentric cylinders with a high aspect ratio being 

more complex than a correlation (turbulence, temperature stratification). 

6. Conclusions 

In this article, we presents a numerical model in order to rate the temperature of a cable installed 

inside a J-tube, not considered in IEC 60287, based on Lumped Element Method. This one is then 

compare to previous works for validation, with relative success. Furthermore, contrarily to the 

previous one, this model is more flexible, giving access to 2D temperature field in a more physical 

way. It is even possible to access transient by adding thermal capacities to each node. This work is 

still in progress. 

With a valid model, it is presented in this paper a sensibility analysis based on local and global 

analysis. We find out weather is the most impactful parameter on cable current ampacity (sun, wind, 

ambient temperature) and should be controlled continuously in order to manage overheating. 

Otherwise, we find out that cable surface emissivity should be better assessed because of its strong 

influence on the cable temperature, in contrast to J-tube surfaces. Finally, even if thermal exchanges 

between the cable and the tube are dominated by radiation in this case, an improvement of the inner 

convection should lead to concrete optimisation of the cable current ampacity. However, this last 

statement should be verify with further studies. 

Nomenclature 

Letters 

𝜑− Surface heat flux W.m−2 𝑮𝒌 
Matrix of radial thermal 

conductances  
W.K−1 

𝜆− Thermal conductivity W.m−1. K−1 𝑨𝒌 
Matrix of convection conductances 

between the cable and the tube 
W.K−1 

𝐷− Diameter m 𝑮𝒂𝒎𝒃𝒌 
Matrix of conductances between 

outer tube surface and ambient 
W.K−1 

𝜃− Temperature K 𝑯𝒌 
Matrix of axial thermal 

conductances 
W.K−1 

𝜀− Radiative emissivity − 𝜃𝑘 Vector of axial nodes temperature K 

𝜎 Stefan constant W.m−2. K−4 𝜃𝑔𝑎𝑠𝑘  Vector of gas temperature K 

𝐴− Lineic surface m 𝜙𝑘 Vector of heat sources W 

ℎ− 
Heat exchange 

coefficient 
W.m−2. K−1 𝑉𝑤𝑖𝑛𝑑  Wind velocity m. s−1 

𝑅𝑎 Rayleigh number − 𝐹𝑠𝑤 Shape coefficient − 

𝐻 
Aspect ratio: 𝐻 =

𝐿𝑎𝑖𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐺𝑎𝑝
 

− 𝐻𝑠𝑢𝑛 Sun heat flux W.m−2 

𝐿𝑠𝑒𝑐𝑡𝑖𝑜𝑛 Section length m 𝛼 
Outer tube surface absorptivity of 

Sun heat flux 
−  

Gap 
Gap between cable and 

inner tube surface 
m 

𝑊𝑐 ,𝑊𝑑  
𝑊𝑠 ,𝑊𝑎 

Electricity losses in core, dielectric, 

screen, armour 
W 

𝐾 Radius ratio: 𝐾 =
𝐷𝑠

𝐷𝑤
 − 𝑟− Radius m 

𝜙− Heat flux W    
Subscripts 

−𝑠 Cable surface / −𝑜 Outer tube surface / 

−𝑤 Inner tube surface / 
−min   

−mout  
Temperature mean / 

−𝑎𝑚𝑏 Ambient /    
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