

UNIVERSITATEA DE MEDICINĂ ȘI FARMACIE IULIU HAȚIEGANU CLUJ-NAPOCA

Nanocomposite-based electrochemical platforms for pharmaceutical and environmental applications

<u>Gheorghe Melinte</u>^{1,2}, Andreea Cernat¹, Oana Hosu¹, Giovanna Marrazza², Cecilia Cristea¹

¹Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania ² Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy

Preparation and characterization of 3D Cu nanoporous electrodes

Preparation

Coating	Electrolyte	Operating
system	composition	conditions
Cu/Ni _f (denoted Cu/Ni _f)	(i) 0.1 M NiCl ₂ *6H ₂ O + 2M NH ₄ Cl	pH = 4-4.5
		$T=25^{\rm o}C$
		$i = 1 A cm^{-2}$
		time $= 3 \text{ min.}$
	(ii) 0.8 M CuSO ₄ *5H ₂ O + 0.6 M H ₂ SO ₄	$T = 25-30^{\circ} C$
		i = 28-35 mA
		cm ⁻²
		time = 15-20
		min.

Electrolytes composition and operating conditions for electrochemical preparation of the 3D Cu nanoporous electrodes

Surface characterisation

SEM images at different magnifications (X10000, X50000 and corresponding EDX analysis of Cu electrodeposited onto Ni_f at 35 mA cm⁻² for 15 min

Electrochemical characterisation

EIS data recorded in 5 mM $[Fe(CN)_6]^{3-/4-}$ in 0.1 M KCl solution for Cu strip and Cu/Ni_f electrodes as Nyquist plots (inset: the proposed equivalent circuit to fit the measured points)

✤ Glucose detection

CVs of the Cu/Ni_f working electrode:

• in the absence of 0.225 mM Glu

• and in the presence of 0.225 mM Glu in 0.1 M NaOH (10 mV/s)

- A. CA of CuNi_f electrodes in 0.1M NaOH with standard additions of 2.5 mM of Glu, under continuous stirring at 500 rpm (0.55 V, 0.1 s step potential);
- B. The calibration curve in the range of $6 185 \mu M Glu$

C. CA of CuNif electrodes in 0.1M NaOH with standard additions of 25 mM Glu, under continuous stirring at 500 rpm (0.55 V, 0.1 s step potential);

D. The calibration curve in the range of 0.24 - 1.63 mM Glu.

G. Melinte, A. Cernat et al., *Materials* 13(12) (2020) 2752.

✤ Interference studies and applications

CA in 0.1 M NaOH with standard additions every 100 s of 400 µM Glu, 20 µM UA, P, AA, R and 400 µM Glu $(E_p = +0.55 \text{ V}, 1100 \text{ s})$ for the Cu/Ni_f electrode

Calibration curve for the Cu/Ni_f on Cu electrode in the range of 0.24 - 1.63 mM Glu

- on standard solutions
- on commercial human serum spiked with 0.1 M Glu

G. Melinte, A. Cernat et al., *Materials* 13(12) (2020) 2752.

1.6

Preparation and characterization of polypyrol modified electrodes

Electrochemical deposition of 3-carboxylic PPy in 0.1 M LiClO₄ and 9 mg/ml PVP. Inset: 10^{th} cycle for the electrochemical polymerization of:

- 3-carboxylic Py with PVP in 0.1 M LiClO₄.
- 0.1 M LiClO₄ in the absence of the monomer and PVP
- $0.1 M LiClO_4$ with 9 mg/ml PVP in the absence of Py

SEM images performed on the carbon-based working surface at different magnifications (x15K, x50K, x150K):

- (A, B, C) unmodified graphite-based electrode
- (D, E, F) 3-carboxylic pyrrole (0.05 M) in 0.1 M LiClO4 with 9 mg/ml PVP,
- (G, H, I) 3-carboxylic pyrrole (0.25 M) in 0.1 M LiClO4 with 9 mg/ml PVP

2

Folic Acid detection

CVs in 100 μ M FA:

- on the unmodified electrode;
- 3-carboxylic Py in 0.1 M LiClO₄ in the absence of PVP;
- 0.1 M LiClO₄ and PVP in the absence of Py;
- 3-carboxylic Py in 0.1 M LiClO₄ and PVP;
- 3-carboxylic Py in 0.1 M LiClO₄ and PVP kept 5 minutes under nitrogen prior the analysis

CVs for FA standard solutions in 20 mM PBS pH 7.4 (2.5 μ M, 5 μ M, 12.5 μ M, 25 μ M, 50 μ M, 100 μ M, 150 μ M) on the modified surface.

Calibration curve for different concentrations of FA in PBS pH 7.4;

12.5 μM 25 μM 50 μM 100 μM

-0.: F/V

2

FA standard solutions in 1:100 commercial human serum in 20 mM PBS pH 7.4 (5 μ M, 25 μ M, 50 μ M, 100 μ M, 200 μ M);

Inset: magnification of the anodic peak at -0.5 V/Ag.

✤ Interference studies and applications

Recoveries for the current intensity (μA) of the anodic peak correlated with the electrochemical oxidation of 5, 8-dihydrofolic acid in the presence of 100 μ M FA and of 25 μ M interfering agents: dopamine, serotonin and ascorbic acid

Current intensity (μA) of the anodic peak correlated with the electrochemical oxidation of 5, 8-dihydrofolic acid after 1, 3, 7, 10 and 30 days in the presence of 100 μ M FA;

	R	Real sam	ples			
(Commerci	al serum sp	iked with F	A		
	[FA] (μM)	Recovery (%)				
		Current intensity	Calculated [FA]			
	25	104.1%	115%			
	50	104.07%	128%			
	100	98.96%	105.67%			
Pharmaceutical tablets (5 mg)						
		Recovery (%)				
Extraction solvent	[FA] (μM)	Current intensity	Calculated [FA]	Amount of FA in tablets		
Deionized water	25	96.37%	97.79%	96%		
20 mM PBS pH 7.4	25	96.37%	97.79%	96%		
	50	88.23%	99.5%	101.94%		
	100	98.36%	104.44%	102.42%		

2

Platforms development

Platform design		Experimental conditions		
		Solution concentration	Electrodeposition	
			parameters	
(I)	AuNPs/SPCE	2 mM HAuCl ₄ in 0.5 M H ₂ SO ₄	-0.20V for 130 s	
(II)	PtNPs ⁱ /SPCE	$4 \mu M H_2 PtCl_6 in 0.5 M H_2 SO_4$	- 0.20V for 130 s	
(III)	PtNPs ⁱⁱ /SPCE	1 mM H_2 PtCl ₆ in 0.5 M H_2 SO ₄	-0.20V for 130 s	
(IV)	Au-PtNPs/SPCE	Mixture of 2 mM HAuCl ₄ and 4 μ M H ₂ PtCl ₆ in 0.5 M H ₂ SO ₄	- 0.20 V for 130 s	
(V)	PANI/SPCE	2.5 mM $C_6H_5NH_2$ in 50 mM HClO ₄ ;	CV: -0.40– 0.80 V vs Ag/AgCl, 10 scans, 50 mV s ⁻¹ at SPCE	
(VI)	Au- PtNPs/PANI/SPCE	2.5 mM $C_6H_5NH_2$ in 50 mM $HClO_4$; Mixture of 2 mM $HAuCl_4$ and 4 μ M H_2PtCl_6 in 0.5 M H_2SO_4	CV: -0.40– 0.80 V vs Ag/AgCl, 10 scans, 50 mV s ⁻¹ at SPCE – 0.20 V for 130 s at PANI/SPCE	

Polyaniline/gold-platinum-based platforms for arsenic detection

Platforms characterisation

Electroactive surface area % versus geometric area of a bare SPCE compared to SPCE modified with:

(I) AuNPs,
(II) PtNPsⁱ,
(III) PtNPsⁱⁱ,
(IV) Au-PtNPs,
(V) PANI,
(VI) Au-PtNPs/PANI

CVs in 5 mM $[Fe(CN_6)]^{4-/3-}$ in 0.1 M KCl solution at (**IV**)Au-PtNPs/SPCE at rates 25–150 mV s⁻¹

3

Peak current intensities obtained by means of SWASV measurements at platform **IV** from solutions containing As(III) of 0.033 μ M (blue), 0.067 μ M (green), 0.133 μ M (cyan), 0.2 μ M (grey) in 0.1 M HCl by applying a cathodic pre-concentration time (t_{dep}) of 60 s (A), 120 s (B), 180 s (C), 240 s (D) at E_{dep} = -0.50 V

Detection and interference studies

Calibration plot for As detection.

Inset: SWASV obtained at (IV) Au-PtNPs/SPCE platform $(E_{dep} = -0.5 V; t_{dep} = 60 s)$ with As(III) solution concentrations of 33, 67, 100, 133, 166, 200 nM in 0.1 M HCl solution;

Sensors performances Platforms (**IV**) and (**VI**) were evaluated for arsenic detection in 0.1M HCl electrolyte; Platform (**IV**) Au-PtNPs/SPCE presented a linear range in the domain 33-200 nM with a sensitivity of 0.017 μA nM⁻¹ and a LOD of 19.7 nM;

Platform (VI) Au-PtNPs/PANI/SPCE presented a dose response curve in the range of 0.1 - 1.25mM As(III) with a sensitivity of 6.116 μ A mM⁻¹

Interferences					
Metal	E / V	Ι/μΑ			
As(III)	0.2	8.93			
Cu(II)	0.26	0.96			
Pb(II)	0.47	5.67			

C

T

Hg(II)

SWASV signal for As(III), Cu(II), Pb(II), Hg(II) solution in 0.1 M HCl in the potential range from 0 to +0.6 V; $t_{dep} = 60s$, $E_{dep} = -0.50$ V.

0.25

1.87

Conclusions

Nanomaterials have been extensively used in biosensors design to enhance their electrochemical performance in terms of sensitivity, reproducibility and oftentimes selectivity;

Cu electrodes have been dopped with Ni_{foam} in order to increase it's catalytic activity and selectivity towards Glucose; the analyte was detected with a LOD of $2\mu M$;

РРу

3D polymeric 3-Carboxylic Pyrrole modified electrodes have been used for selective folic acid detection, with a LOD of 0.8 μ M, and successfully applied in serum and commercial folic acid tablets samples;

Gold-platinum nanoparticles have been used to increase the catalytic effect of a Polyaniline platform and successfully applied for Arsenic detection obtaining 2 calibration curves, in the absence and presence of Polyaniline, with the minimum LOD of 19.7 nM.

THANK YOU FOR YOUR ATTENTION!

This work was supported by The Romanian National Authority for Scientific Research and Innovation, CCCDI-UEFISCDI, project no. ERANET-RUS-PLUS-PLASMON-ELECTROLIGHT/46/2018 and INTELMAT/39/2018 projects within PNCDI III and in the frame of European Social Found, Human Capital Operational Programme 2014-2020, and UMF "Iuliu Hațieganu" Cluj-Napoca, within grant no. 2462/37/17.01.2020