

Adrian Blidar^{1,3}, Oana Hosu¹, Geanina Ștefan^{1,2}, Karolien De Wael³, Cecilia Cristea¹

¹"Iuliu Hatieganu" University of Medicine and Pharmacy, Faculty of Pharmacy, Analytical Chemistry Department, 4 Pasteur Street, 400349, Cluj-Napoca, Romania ²Robert Bosch SRL, Physical and Chemical Analysis Department (RBRO/EQV-A), Tetarom 3 Industrial Park, Jucu Herghelie 407352, Cluj, Romania ³AXES Research Group, Department of BioEngineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium

INTRODUCTION

• Oxytetracycline (OXT) is an important with widespread use antibiotic. Its overuse fuels the rise of the problem of antibiotic resistance. In this context, there is a clear need for the development of new, fast and sensitive analytical methods capable of performing in field analysis, like electrochemical aptasensors [1].

• The aim of our work was the development of an aptasensor for OXT, using as a starting platform carbon-based screen printed electrodes (C-SPE), modified with Au-based nano/microstructures (Au-NSs/Au-µSs).

• Au-NSs/Au-µSs|C-SPE:

- lower cost compared to Au-based SPE (Au-SPE)
- test the influence of the architecture of the Au-NSs/Au-µSs

Thiolated DNA aptamer (APT), ferrocene-labelled (Fc)

HS-APT-Fc

Fc-GGA-ATT-CGC-TAG-C AC-GTT-GAC-GCT-GGT-GCC-CGG-TTG-TGG) -
TGC-GAG-TGT-TGT-GTG-GAT-CCG-AGC-TCC-ACG-TG-(CH ₂) ₆ -SH	

Protocols for the electrodeposition of Au-NSs/Au-µSs							
Platform	C _M HAuCl ₄ (mM)	Electrolyte	Electrochemical technique	Parameters			
P1	10	0.1 M KCl	CA	-0.3 V, 1200 s			
P2	10	0.5 M H ₂ SO ₄	СР	-100 µA, 600 s			
Р3	5	$0.5 \text{ M} \text{H}_2\text{SO}_4$	CA	-0.4V, 1200 s			

CA: Chronoamperometry; **CP**: Chronopotentiometry;

ACKNOWLEDGEMENTS

• This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CCCDI-UEFISCDI, project number ERANET-RUS-PLUS-PLASMON-ELECTROLIGHT/46/2018, within PNCDI III. The authors acknowledge Dr. Diana Bogdan (National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania) for AFM experiments.

1. Y. Li et al., Sensors Actuators, B Chem., 240 (2017) 785–792, DOI:10.1016/j.snb.2016.09.042.

New Au-based nano/microstructures for the development of a new aptasensor for oxytetracycline

blidar.adrian@umfcluj.ro

- The resulting analytical platforms were selected based on their influence on the immobilization of the aptamer and on the response of the aptasensor to the binding of OXT;
- A more well-organized architecture, with much more uniform NSs favored a better response of the "signal-on" aptasensor.

ge in the response in relation to the previous step ($\Delta I/I_0$ %)							
orm	Au-SPE	P1	P2	P3			
	-42.47% ± 5.4%	-47.15% ± 7.1%	-79.67 % ± 4.3%	-43.37% ± 6.1%			
DXT	+57.28% ± 7.2%	+28.99 % ± 2.9%	+276.31% ± 18.5%	+46.50% ± 3.3%			

• The creation and characterization of new Au-NSs/Au-µSs|C-SPE for an aptasensor for OXT was carried out;