

Department of Nuclear Physics and Biophysics, FMFI, Comenius University in Bratislava, Slovakia

Detection of Listeria innocua by acoustic aptasensor

Veronika Oravczová; Marek Tatarko; Jüdit Sule;

Milan Hun; Zoltán Kerényi; Attila Hucker; Tibor Hianik

Foodborne pathogens

• Worldwide: 600 milion cases, 420 000 deaths (WHO, 2020)

Prevalent foodborne pathogens contaminating food:

- Listeria monocytogenes
- Escherichia coli
- Staphylococcus aureusm
- Salmonella enteritica
- Bacillus cereus
- Campylobacter jejuni
- Clostridium perfringens
- (Oliver et al., 2005; Scallan et al., 2011; Zhao et al., 2014)

(https://www.ift.org/news-and-publications/blog/2019/september/top-10-most-common-foodborne-pathogens)

Standardized methods for foodborne pathogen detection

- Highly specific
- Low-cost
- **Provide qualitative and quantitative information**
- It can take up to 72 hours to confirm negative sample, 7 days to confirm positive
- PCR (Polymerase chain reaction), ELISA (enzyme linked imuno assay), ELFA (Enzyme linked fluorescent assay)
 - Fast detection, examination of large number of samples
 - High reocurring costs restricting their routine use.

(Law et al., 2015)

Figure 1: Scheme of biosensor detection.

(https://www.innovogene.com/store/pc/viewcontent.asp?idpage=11)

(Salami et al., 2019; Karunakaran et al., 2015; Thévenot et al., 2001; Choi and Chae, 2009)

0

0

0

0

transducer

thickness shear vibration of the quartz crystal plate

Figure 2: Schematic representation of piezoelectric Quartz Crystal Microbalance and scheme of QCM vibration. (Skládal 2003)

Piezoelectric biosenzors and their application

o Quartz crystal with AT cut is used in the QCM configuration

• Frequency of the piezoelectric crystal is affected by the amount of mass deposited on its surface (Skládal, 2002)

- Detection of bacteria using QCM biosensor:
 - QCM-aptasensor for the detection of *Brucella melitensis* in milk, limit of detection (LOD) = 10^3 CFU/mL (Bayramoglu et al., 2019)
 - QCM aptasensor for detection of *E.coli*, LOD = 34 CFU/mL for t = 40 min. (Yu, 2018)

Aptamers and their application

 Synthetic peptides or single-stranded sections of DNA/RNA oligonucleotides

 Synthesized using SELEX (Systematic Evolution of Ligands by Exponential Enrichment). (Ellington and Szostak, 1990)

 Compose advanced 3D structures, thus creating specific bonding site for target molecule (Yu et al., 2018).

 Advantages compared to antibodies: higher affinity and specificity towards its target molecule, thermostability, low-cost and fast synthezis.

• Possible applications for a wide range of target molecules (Yu et al., 2018).

Aim of work

Investigating the possibility of using QCM method for the detection of pathogenic bacteria *Listeria innocua* using DNA aptamers as receptors.

> Study of aptamer specificity for the detection of *Listeria innocua*.

➢ For future experiments we would like to continue in the development of highly sensitive biosensor with the use of nanoparticles modified with aptamers. Our aim is limit of detection 10 CFU/ml.

Hungarian Dairy Research Institute, Mosonmagyaróvár, Maďarsko

The experiment was performed at the Hungarian Dairy Institute in Mosonmagyaróvár

SARK-110

• Vector analyzer

o Multi-purpose

o Portable

Generates and detects signal

QCM measurements: we measured multiharmonic frequencies and energy dissipation

Materials and methods - QCM

Figure 3: Scheme of AT- cut crystal with gold electrodes (A) and its implementation into QCM composition (B). The crystal is placed inside the flow cell and the solution is delivered with a pump with a syringe to the surface of the crystal (C).

Material and Methods 1

 \circ QCM crystal was purified with basic Piranha solution (mixture of NH₃, H₂O a H₂O₂ in the ratio 1:5:1) for three 25-minute cycles and dried with nitrogen.

• Subsequently, the surface of the crystal was modified with NeutrAvidin and aptamer specific for *Listeria spp*. was immobilized on the surface of the crystal.

• The sample of *Listeria innocua* was prepared followingly: culture of *L. innocua* was innoculated from deep freeze to the surface of bacterial growth promoting agar. After the cultivation, a certain amount was collected and diluted in PBS. Subsequently, the samples were measured by QCM.

Material and Methods 2

 To determine CFU/ml (colony forming units), enumeration plate method on agar was used.

• Following methods wew used to detect foodborne bacteria:

 Cultivation on agar for the purpose of identification as well as quantification (MSZ EN ISO 11290-1:1996/A1:2005; MSZ EN 11920-2:2012).

• PCR test (BACGene Listeria spp. KIT, validation EGS 38/02-01/17)

• Vidas[®] test (ISO 16140 by AFNOR (BIO 12/33-05/12))

Immobilization of layers: (recalculation by the Sauerbreyer equation)

- A) NeutrAvdin:
 5,627 x 10¹² molecules/cm² bound
- B) Aptamer
 1,079 x 10¹³ molecules/ cm² bound

Total number of free biotin binfing sites (per aptamer):

- 1.125x10¹³ molecules/cm^2

Figure 4. Kinetics of the changes of fundamental frequency, 3rd and 7th higher harmonic frequencies (values divided by their harmonic order number n = 3, 7) vs. time following addition of neutravidin and DNA aptamers. The moment of addition of neutravidin and aptamers as well as washing the surface by water and PBS are shown by arrows.

Table 1. Resulting data from the addition of column forming units per milliliter (CFU / ml) at each dilution.

Sample	Dilution	Number of colonies on agar			Average	Standard	Relative	Final
		A	В	С	count	deviation	ueviation	Croynn
1. L.	10 ⁻⁵	272	294	297	288	13.7	5%	2.91*10 ⁸
innocua	10 ⁻⁶	33	32	32	32	0.6	2%	
2. E. coli	10 ⁻⁵	382	358	368	369	12.1	3%	3.71*10 ⁸
	10 ⁻⁶	44	46	26	39	11.0	28%	
3. L.	10 ⁻⁵	290	346	311	316	28.3	9%	3.24*10 ⁸
innocua	10 ⁻⁶	34	58	30	41	15.1	37%	
BACGene PCR results: Number of tested samples obtained from milk, poultry and semi-finished products: 40 pcs total \rightarrow 15 pcs positive.								

Results: Determination of the CFU/mL value in the samples and testing for the presence of *Listeria spp.* in foods

Results: aptamer Listeria Innocua

Table 2. Change of frequency after the appplication ofsample with different concentration.

	Change in	
Concentration x	fundamental	
3.24 CFU/ml	frequency Δf _s	
	[Hz]	
5x 10 ³	-2.035	
10 ⁴	-4.566	
5x 10 ⁴	-8.520	
10 ⁵	-13.163	

After application of *Listeria innocua*, we observed a decrease in frequency (Fig. 5), which is associated with the uptake of bacteria by the aptamer.

Figure 5: The kinetics of the changes of fundamental frequency of aptasensor following addition of *Listeria innocua*. After each addition the sensor has been washed by PBS to remove weakly adsorbed bacteria.

Results: Calibration curve

Table 3: Average frequency changes due to application of a sample of a given concentration resulting from three measurements.

Concentration CFU/ml	Average change of fundamental frequency Δf _s [Hz]	Standard deviation (STDEVA)
10 ³	-0.840	0.003
104	-2.392	0.311
10 5	-3.198	0.411
10 ⁶	-7.575	0.333

Figure 6: Calibration curve for *Listeria innocua* created by plotting resonance frequency change vs. bacteria concentration and fitted with the Langmuir isotherm using Origin version 7.5. Fitting parameters were Δf_{max} = -8.34 ± 2.09 Hz, K_D = 1.21 ± 1.11 x10⁵ CFU/ml, Chi² = 2.01.

Limit of detection 1,611 x 10e3 ± 0,4 x 10e3 CFU/ml

Results: Non-specific interactions with E. Coli

 In contrast to Figure 5 after application of bacterial samples, we observe an increase in frequency, i.e. we did not observe uptake of E. coli bacteria by the aptamer.

Figure 7: The kinetics of 5th harmonic frequency (values divided by factor n=5) caused by addition of *E. coli*.

Conclusion

- We were able to detect Listeria innocua using QCM method.
- Limit of detection (LOD) = 1 611 CFU/ml for t = 30 minutes.
- Tested specificity for *Listeria spp.* (absence of signal for bacteria E. coli)
- The method we used proved to be a highly specific, sensitive and rapid form of pathogen detection
- Goals for future experiments: detection of pathogens directly in dairy products.

References

Bayramoglu, G. Ozalp, V.C. Oztekin, M. Arica, Y. A. (2019). Rapid and label-free detection of Brucella melitensis in milk and milk products using an aptasensor. *Talanta.* 200. pp. 263-271. <u>https://doi.org/10.1016/j.talanta.2019.03.048</u>.

Choi, W. Chae, J. (2009). A microfluid biosensor based on competitive protein absorption for thyroglobuli detection. *Biosens Bioelectron*. 25(1).527-531. doi: 10.1016/j.bios.2009.06.017.

Law, J.-F. Ab Mutalib, N.-S. Chan K.-G., Lee L.-H. (2015). Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. *Front. Microbiol.* 5. pp. 770. DOI=10.3389/fmicb.2014.00770

Karunakaran, C. Bhargava, K. Benjamin, R. (2015). *Biosensors and Bioelectronics 1st Edition*. Elsevier. ISBN: 9780128031018.

Oliver, S. P. Jayarao, B.M. Almeida, R.A. (2005). Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. *Foodborne Pathog Dis*. 2(2). pp. 115-129. DOI: 10.1089/fpd.2005.2.115.

Salami, M. Abadi, M.H.S. Sawan, M. Abadi, N.S.K. (2019). BioFET-based integrated platform for accurate and rapid detection of E. coli bacteria: A review. *J. Biosens. Bioelectron.* 10(1). pp. 266. DOI: 10.4172/2155-6210.1000266.

Scallan, E. Hoekstra, R. M. Angulo, F. J. Tauxe, R. V. Widdowson, M. A. Roy, S. L. Jones, J. L. Griffin, P. M. (2011). Foodborne illness acquired in the United States-major pathogens. *Emerging infectious diseases*. 17(1). pp. 7–15. <u>https://doi.org/10.3201/eid1701.p11101</u>.

Skládal, P. (2002). *Biosenzory*. pp. 149. Brno: Masarykova Univerzita.

Thévenot, D. Toth, K. Durst, R. Wilson, G. (2001). Electrochemical biosensors: recommended definitions and classifications. *Biosensors and Bioelectronics*. 16. pp. 121-131. DOI: 10.1081/AL-100103209.

Yu, X. Chen, F. Wang, R. Li, Y. (2018). Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor. *J. Biotechnol.* 266. pp. 39-49. DOI: 10.1016/j.jbiotec.2017.12.011.

Zhao, X. Lin, Ch.-W. Wang, J. Oh, D.H. (2014). Advances in rapid detection methods for foodborne pathogens. *J. Microbiol. Biotechnol.* 24(3). pp. 297-312.

Thank you.

Funding: This work was funded by the European Union, project Horizon 2020, Marie Skłodowska-Curie, contract number 690898 and was also supported by the scientific grant agency VEGA, project number: 1/0419/20.