

Biocompatible temperature nanosensors based on Titanium dioxide

Veronica Zani, Danilo Pedron, Roberto Pilot, Raffaella Signorini veronica.zani@studenti.unipd.it, danilo.pedron@unipd.it, roberto.pilot@unipd.it, raffaella.signorini@unipd.it

Italy, University of Padua and INSTM

November, 2020

Content summary

Nanothermometry

What is a nanothermometer

Applications

Raman thermometry

The method

The material

Results and discussion

Raman spectrum of Titanium dioxide Temperature determination

Conclusions

Nanothermometry What is a nanothermometer

- temperature sensor
- micrometric and sub-micrometric spatial resolution required: traditional strategies can't be applied (Quintanilla and Liz-Marzán 2018)
 - small dimensions of the probe
 - limited access to the area of interest

Applications of nanothermometers

- measurement of temperature in biological samples and tissues
- detection of hot-spots in microcircuits

Figure: Temperature measurement of living cells using a fluorescent nanothermometer (PMMA) and a thermosensitive fluorescent dye (Eu-TTA) (Bai and Gu 2016).

Raman spectroscopy as a nanothermometry technique

- optical technique: advantage of contactless measurement of temperature
- non-disruptive
- inelastic scattering of light
- the intensity and shape of Raman signals related to temperature

Raman spectroscopy as a nanothermometry technique

Intensity, peak position and width are the parameters used to measure sample temperature (Beechem and Serrano 2011)

Figure: Intensity

Figure: Position

Figure: Linewidth (FWHM)

Description of the method for temperature determination

Figure: Origin of Stokes (left) and anti-Stokes scattering (right).

Figure: Ratio of anti-Stokes and Stokes intensities in the Raman spectrum.

Requirements for a Raman nanothermometer

- a large Raman scattering cross-section (to reach high signal-to-noise ratios)
- high intensity Raman peaks at low Raman shifts (the upper limit depends on the working temperature, in general near room temperature it's 600 cm^{-1}); indeed the lower the Raman shift the more sensitive is the peak intensity to temperature (Tuschel 2019),
- well-defined and distinguishable Raman peaks,
- low absorbance at the excitation wavelength, to avoid heating mechanisms

Nanothermometry Literature

Studies of Raman temperature measurement can be found in literature for Silicon, Gallium Arsenide, Gallium Nitride and graphene.

Also Titanium dioxide (TiO_2) has been tested in few works as a Raman temperature thermometer for Titanium dioxide microparticles and for thin films of Titania used in solar cells.

Nanothermometry Titanium dioxide

- anatase, rutile and brookite
- wide band gap insulator (3.0 eV)
- chemical stability and nontoxicity
- photocatalysis, optical coatings, optoelectronic devices and biomedicine

Figure: *TiO*₂ whiskers (Ws) drug delivery mechanism (Yin et al. 2013).

Characterization of Titanium dioxide through Raman spectroscopy

Figure: Anatase Stokes Raman spectrum

We choose **Titanium dioxide anatase** for our research as it seems to suite perfectly all the requirements for a good Raman thermometer.

Characterization of Titanium dioxide through Raman spectroscopy

Figure: Anatase Stokes and anti-Stokes spectra recorded at 647.1 nm and 298 K.

By observing Stokes and anti-Stokes spectra, it turned out that the best peak for temperature monitoring is the one at **143** cm $^{-1}$. It's well defined, very intense even at low laser powers, and highly sensitive to temperature, thanks to its low Raman shift.

Calibration curve

Relation between the anti-Stokes/Stokes ratio and temperature, used as the calibration curve:

$$\rho = C \cdot \frac{(v + v_0)^3}{(v - v_0)^3} exp\left(-\frac{hv}{kT}\right) \tag{1}$$

 ρ = anti-Stokes/Stokes ratio

C = calibration constant

v = frequency of the Raman mode

 v_0 = frequency of the laser

h = Planck's constant

k = Boltzmann's constant

T = temperature of the sample

Calibration procedure

Example: $\lambda_{exc} = 647.1$ nm

Figure: Raman spectra of the lower-frequency E_g mode at 283, 298 and 318 K

Figure: anti-Stokes/Stokes experimental ratios (circles); calibration curve (solid line).

Temperature determination

Calibration of row data

$$\rho_{ex} = \frac{I_{aS}}{I_{S}} \qquad T_{ex} = \frac{hv/k}{ln\left(\frac{(v+v_{0})^{3}}{\rho_{ex}}\right)}$$
(2)

$$\rho_{c} = \rho_{ex}/C \qquad T_{c} = \frac{hv/k}{ln\left(\frac{(v+v_{0})^{3}}{\rho_{c}}\right)}$$
(3)

Table

λ_{exc}	aS/S	Row Temp.	Calibration	Sample
	ratio		const.	Temp.
[nm]		[K]		[K]
514.5	0.5231	292	$\boldsymbol{0.979 \pm 0.006}$	301
568.2	0.5120	281	$\boldsymbol{0.964 \pm 0.007}$	296
647.1	0.6569	425	1.22 ± 0.01	298

Table: Experimental anti-Stokes/Stokes ratios (column II) and row temperatures (column III) determined at 298 K as function of the excitation wavelength. Values of the calibration constant (column IV); Sample temperature obtained from experimental anti-Stokes/Stokes ratios (column V).

Temperature determination Calibration of row data

- calibration procedure at 514.5, 568.2 and 647.1 nm
- calibration constants determined with a precision of approximately 0.6-0.8 (less than 1%)
- considering that the area of the peak can be determined by means of a Voigt fit with a precision of 1%, the total uncertainty on the temperature measurement can be as good as 5 K
- the goodness of the calibration was evaluated on the base of room temperature measurements on the same sample of Titanium dioxide powder

Conclusions

- Titanium dioxide is proposed as a Raman thermometer for biological applications, in a wide optical range. It has been tested at three different wavelengths, 514.5, 568.2 and 647.1 nm.
- the calibration constant is mainly due to an instrumental factor, as the correction for the anti-Stokes/Stokes ratio shows a good correlation with the correction derived from the instrumental response function
- future perspectives: study of more complex systems; Raman thermometry in the IR region of the spectrum, close to the biological window

Thank You for Your Attention!

