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Abstract: The intensive development of agriculture leads to depletion of land, a decrease in crop 

yields and in plant resistance to diseases. A large number of fertilizers and pesticides are currently 

used to solve these problems. Chemicals can enter the soil, penetrate into the groundwater and 

agricultural plants. Therefore, the primary task is to intensify agricultural production without 

causing additional damage to the environment. This problem can be partially solved using 

microorganisms with target properties. Microorganisms that combine several useful traits are 

especially valuable. The aim of this work was to search for new microbial strains that possess a 

complex technologically significant potential, such as increasing the bioavailability of nutrients, 

phytostimulation, antifungal effect and degradation of pesticide residues and other xenobiotics. 

Few isolated Bacillus and Pseudomonas strains were characterized by high activity against fungal 

phytopathogens. One of the bacterial strains identified as Bacillus sp. on the basis of the 16S rRNA 

gene sequence was characterized by an unusual cellular morphology and development cycle, 

significantly different from all previously described bacteria of this genus. All isolated bacteria are 

capable of benzoate degradation, as a sign of the ability to degrade aromatic compounds. Isolated 

strains were shown to be perspective agents in biotechnologies. 
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1. Introduction 

The continuously increasing level of environmental pollution leads to the need for the 

development of biotechnologies for environment remediation. The soil is an extremely complex 
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habitat, rich in microorganisms and characterized by a high diversity of microbial communities. The 

number of microorganisms is several billion cells per gram of soil, and biodiversity reaches hundreds 

of thousands of species of bacteria and archaea [1]. The rhizosphere is the most microorganism-rich 

part of the soil due to the mutual positive influence of plants and microorganisms on each other.  

The soil is not only a depository of biological diversity, but also a kind of biochemical reactor, 

since microorganisms constantly carry out many enzymatic reactions / processes, including the 

degradation of xenobiotics and pollutants of natural origin. The microbial community is the most 

important ecological indicator of "soil health", which reflects the state of the soil biocenosis and its 

response to various influences, including pollution by toxic substances. Soils of agricultural 

importance are subjected to colossal anthropogenic impact, which leads to a change in their mineral 

composition, a decrease in the content of soil organic matter, the accumulation of pesticides, the 

spread of pesticide-resistant phytopathogenic microorganisms and, ultimately, to the depletion of 

the species and numerical composition of agrobiocenoses.  

Among the research fields of soil microbiology, it is necessary to note such areas as the 

assessment of the general state of microbial systems, seasonal fluctuations in the biomass of 

microbiocenosis, the spread of microorganisms of various taxonomic groups in soils of different types 

[2], as well as the study of the effect of anthropogenic load on the change in abundance and the 

diversity of soil microorganisms [3]. Special attention is paid to the study of rhizosphere 

microorganisms, including bacteria that stimulate plant growth (plant growth promoting 

rhizosphere bacteria) [4, 5]. In this case, not only microbial diversity is investigated, but also the 

features of the interaction of microorganisms with the host plant are revealed. The mechanisms of 

the positive effect of bacteria on plants can be roughly divided into two types: direct stimulation of 

plant growth through the synthesis of phytohormones and improvement of their mineral nutrition; 

indirect stimulation of plant growth by inhibiting the growth of soil phytopathogenic fungi and 

bacteria [6].  

In recent decades, biological preparations based on a variety of microorganisms and their 

metabolites are increasingly used to protect plants from pathogens. [7, 8]. The active agents of 

biopreparations are components of natural biocenoses, which explains their safety for the 

environment. The positive aspects of using microbiological preparations are their environmental 

friendliness, including a decrease in the chemical load on agroecosystems, low cost, the possibility of 

combining them with chemical plant protection agents, and a fairly high biological effectiveness of 

action. The use of biological products increases the yield of agricultural crops by 10-40% (depending 

on the type of plants), improves the quality of products and their nutritional and feed value. On the 

Russian market there are a number of such well-proven microbiological biological products, 

including inoculants for legumes (Rizotorfin), biofungicides (Flavobacterin, Rizoplan, Gamair, 

Glyocladin), growth stimulants (Mizorin, Agrophil, Bizcoloinci) [9, 10]. 

Currently, the urgent tasks for increasing the productivity of agricultural crops are the isolation 

of new effective strains of bacteria to protect and stimulate plant growth, the study of their influence 

on plant development in various conditions, including in areas contaminated with toxicants, 

including pesticides. The aim of this work was to search for new microbial strains that are applicable 

for agricultural production and possess a complex technologically significant potential. 

2. Material and methods 

2.1. Bacterial strains and cultivation conditions  

Bacterial strains were isolated from the chernozem soil collected in Belgorod region, Russia. 

These soils are used as agricultural soils with a crop rotation. To isolate strains, the selected samples 

(1 g) were resuspended in mineral medium of the following composition (g/L): Na2HPO4, 0.73; 

KH2PO4, 0.35; MgSO4  x 7H2O, 0.1; NaHCO3, 0.25; MnSO4 x 5H2O, 0.002; NH4NO3, 0.75; FeSO4 x 7H2O, 

0.02 (Reakhim, Россия); pH 7.2. Soil suspension were diluted to 10-8 and 100 µL of diluted in 10-6-10-8 

samples were plated on mineral agarized medium with 200 mg/l of benzoate Na as the sole sources 
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of carbon and energy. Bacteria were grown at 28 °C. Grown colonies were picked up and transferred 

on sterile agarized Luria-Bertani (LB) medium [11]. 

Strains of phytopathogenic fungi Gaeumannomyces graminis var. tritici, Fusarium graminearum and 

Rhizoctonia solani were used as test cultures to study antagonistic activity. For the cultivation of fungi, 

Kanner's medium was used [12]. 

2.2. Sequencing and phylogenetic analysis of 16S rRNA genes 

Genomic DNA was prepared by Fungal/Bacterial DNA Kit (ZymoResearch, USA) according to 

the protocol. Purified DNA samples were used for amplification of a nearly complete sequence of the 

16S rRNA gene using two bacterial universal primers 27F (5’-AGAGTTTGATCMTGGCTCAG) and 

1492R (5’- TACGGYTACCTTGTTACGACTT) [13]. The PCR products were purified using 

Zymoclean Gel DNA Recovery Kit (ZymoResearch, USA) and sequenced with an ABI Prism 373 

3130XL automatic sequencer (Applied Biosystems, USA). 

Preliminary phylogenetic analysis of the nucleotide sequences of the 16S rRNA genes was 

carried out using the GenBank database (NCBI) and the BLAST software package 

(http://ncbi.nlm.nih.gov). For more accurate phylogenetic positioning of the investigated strain, the 

produced 16S rRNA gene sequence was aligned with the respective sequences of the closest bacterial 

species using the CLUSTAL W program [14]. 

2.3. Microscopy 

Light microscopy under phase contrast was carried out under a Nikon Eclipse Ci microscope 

(Nikon, Japan) equipped with a Jenoptic ProgResSpeedXTcore5 camera (Jenoptic, Germany).  

To perform electron microscopy of thin sections, the cell biomass was prefixed with 1.5% (v/v) 

glutaraldehyde solution in 0.05 M cacodylate buffer (pH 7.2) at 4° C for 1 h. After three washings 

with the same buffer, the material was additionally fixed with 1% OsO4 in 0.05 M cacodylate buffer 

at 20° C for 3 h. After dehydration, the material was embedded into epoxy resin Epon 812. Ultrathin 

sections were made on an 8800 ULTROTOME III (Sweden). The sections were mounted on copper 

grids covered with a Formvar film, contrasted with uranyl acetate (3% solution in 70% ethanol) for 

30 min, and then stained with lead citrate [15] at 20° C for 4–5 min. The sections were examined in a 

JEM- 1200EX (JEOL, Japan) electron microscope at an 80 kV accelerating voltage. 

2.4. Determination of the antagonistic activity of soil strains against phytopathogenic fungi 

Soil strains were grown in liquid LB medium for 16–20 h. An aliquot of the culture (5 µ L) was 

applied to the surface of Kanner's agar medium and then incubated at 24° C for 2 days. Then, a 

segment of mycelium (8–10 mm in diameter) of a phytopathogenic fungus was placed in the center 

of a Petri dish. Fungal mycelium was preliminarily grown in Kanner's medium at room temperature 

for 7 days. Petri dishes were incubated at room temperature for 7–10 days, after which the presence 

of a zone of inhibition of mycelium growth was visually assessed. The size of the growth inhibition 

zone was measured from the edge of the bacterial colony. P. chlororaphis strain BS1393, which 

produces a number of antibiotic active compounds, was used as a control [16]. 

2.5. Characterization of the biochemical properties of the tested strains 

To determine the spectrum of utilized substrates and enzyme activities of the isolates, we used 

the Analytical Profile Index (API) 20 E and CH 50 strips (bioMerieux, France) according to the 

manufacturer’s instructions, as well as colored Hiss medium with carbohydrates that contained the 

following (g/L): peptone, 10.0; NaCl, 5.0; carbohydrate, 7.0; and 1.6% bromothymol blue solution, 1.0 

mL. 

3. Results and Discussion 

3.1. Antagonistic activity 

http://ncbi.nlm.nih.gov/
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By the method of direct inoculation on agar medium with sodium benzoate as the sole growth 

substrate, 30 strains of bacteria were isolated, differing in colony morphology. When these strains 

were cultivated on a mineral medium with benzoate, no yellow color of the medium was observed 

in any case. This indicates that the isolated cultures implement the ortho, and not the meta pathway 

of cleavage of catechol. The latter is the most frequently formed intermediate during microbial 

degradation of benzoate. Microorganisms capable of degrading benzoate, as a rule, convert some 

other aromatic compounds. Therefore, this metabolic activity can be used as a marker factor in the 

selection of pollutant-degrading strains. All isolates were tested for antagonistic activity against the 

phytopathogenic fungi Gaeumannomyces graminis var. tritici, Fusarium graminearum and 

Rhizoctonia solani. Of these, 4 strains (designated as 3, 18, 27, 28) exhibited pronounced antifungal 

activity. Isolate 3 had the greatest activity against all used phytopathogenic fungi. Bacteria 18, 27 and 

28 suppressed the growth of F. graminearum only (Table 1). 

Table 1. Antagonistic activity of soil strains against phytopathogenic fungi. 

Strain 

 

Identification 

according 16S 

rRNA gene 

sequencing 

Phytopathogen suppression zone, mm 

F. graminearum R. solani G. g. tritici  

3 P. chlororaphis 3 ± 1 2 ± 1 2 ± 1 

18 B. subtilis ≤1 – 1 – 

27 B. subtilis ≤2 – – 

28 B. subtilis ≤2 – – 

P. chlororaphis BS1393  2 ± 1 3 ± 1 2 ± 1 
1 Zone of suppression of growth of test microorganism is absent. 

3.2. Microscopic studies  

All 30 isolated cultures were microscopically examined for purity and morphological evaluation. 

Based on the results of tests for antifungal activity and microscopy, 5 cultures were selected for 

further work. Morphometric analysis of phase contrast images of the cells of the studied bacterial 

strains made it possible to estimate their size and characterize a number of unique morphological 

features. Vegetative cells of studied bacterial strains 18, 27 and 28 are represented by large rods of 

regular shape with the following sizes (Fig. 1 a–c): strain 27: 3.5 - 5 × 0.7 - 0.9 µm; strain 28: 2.5 - 3.5 × 

0.9 - 1.0 µm; strain 18: 3.5 - 5 × 0.8 - 1.0 µm. Vegetative cells of bacteria 3 have characteristic sizes 1.2 

- 1.8 × 0.7 - 0.9 µm (Fig. 1d). In strain 25, the cells were characterized by an unusual shape and greatly 

varied in size (2.5-4 µm long and 0.8-1 µm wide) depending on the age of the culture.Strain 25 was 

selected for further work due to its unique morphological features. 

3.3. Strains identification 

The nucleotide sequences of 16S rRNA gene (~ 1400 base pairs) for strains 18, 27, 28 were 

determined. The sequences of 16S rRNA gene in all strains differed in single nucleotide substitutions 

(~ 99.2% identity) and, according to the results of phylogenetic analysis, strains 18, 27, 28 belong to 

the class Bacceliaceae, genus Bacillus. The strains showed the highest sequence similarity (99.4%) 

with the type strain of this species Bacillus subtilis subsp. subtilis ATCC 6051TM. 
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Figure 1. Cells of the studied strains in the exponential growth phase. a - B. subtilis 27; b - B. subtilis 

28; c - B. subtilis 18; d – P. chlororaphis 3. Light microscopy. Phase contrast. Bar – 10 µm. 

The closeness of strains 18, 27, and 28 to each other and to the Bacillus subtilis species is also 

confirmed by biochemical characteristics (API tests 20 E and CH 50). Bacillus spp. 18, 27, and 28 

differed from each other and from the type B. subtilis ATCC 6051TM strain by no more than 5 out of 

50 phenotypic characters, which indicates their closeness and possible belonging to this species. 

Nevertheless, since no DNA-DNA hybridization data were obtained, and the physiological and 

biochemical profile is different, we are talking about three different strains of Bacillus subtilis. 

Sequence analysis of the 16S rRNA gene of bacterial strain 3 showed that it belongs to the class 

Pseudomonadaceae, genus Pseudomonas, to the species Pseudomonas chlororaphis and has a high 

level of similarity (~ 99.6%) with the type strain Pseudomonas chlororaphis DSM 50083T. Sequence 

analysis of the 16S rRNA gene of bacterial strain 25 showed that it belongs to the class Bacceliaceae, 

genus Bacillus and has a high level of similarity (~ 99.6%) with the Bacillus aryabhattai strain K13. 

3.4. Biochemical characteristics of soil strains 

Determination of biochemical characteristics of cultures using API 20 E and API 50 CH tests 

revealed the following features. The biochemical profile of strains 18, 27, 28 was almost identical to 

each other and very close to the species Bacillus subtilis ATCC 6051TM. All three strains were urease 

negative. They showed the ability to liquefy gelatin, utilize citrates, as well as a wide range of carbon 

sources, namely, glycerol, L-arabinose, D-ribose, D-xylose, D-glucose, D-fructose, D-mannose, 

inositol, D-mannitol, D-sorbitol, salicin, D-cellobiose, D-maltose, D-melibiose, D-sucrose, D-

trehalose, inulin. The studed strains cleaved potassium 2-ketogluconate and potassium 5-

ketogluconate, and also showed pronounced hydrolytic activity with respect to starch and glycogen, 

weak with respect to turanose. 



Proceedings 2020, 2020 6 of 8 

 

Strain 25, in contrast to strains 18, 27, 28, showed the ability to utilize D-galactose and erythritop, 

but not inositol and inulin. The strain had β-galactosidase and also possessed ability to degrade N-

acetylglucosamine, that indicate on its potential antimicrobial activity. 

Strain 3 utilized a wide range of organic substrates, but did not hydrolyze starch, glycogen and 

xylitol; did not exhibit β-galactosidase and N-acetylglucoseamine enzyme activities. 

3.5. Features of the morphology of Bacillus aryabhattai 25 

A number of unique morphological features of the bacterium B. aryabhattai 25 were identified 

by morphometric analysis of phase contrast images of the cells (Fig 2, 3). The bacterium B. aryabhattai 

25 is distinguished by an unusual form of morphological rearrangements of cells in the cycle of 

culture development. Strain 25, in the process of exponential growth, forms chains of cells of irregular 

shape, which on the first day of growth on rich nutrient media are filled with multiple refractory 

granules of unknown nature (Fig. 2a). 

 

Figure 2. Bacillus aryabhattai str. 25 in the exponential growth phase (a - 1 day of growth; b - 2 days of 

growth). Light microscopy. Phase contrast. Bar – 10 µm. 

On the second day of growth, the process of sporulation begins. During this phase of growth, 

some cells within the cell chain begin to divide in a fragmented manner, forming clusters of multiple 

small and ultrasmall irregular cell forms (Fig. 2 b, c). Some of the ultrasmall cells in the clusters form 

spores (Fig. 2b), and some form spirally twisted cords, in which septa are subsequently formed, 

followed by fragmentation into ultra-small cell forms (Fig. 2d). The formation of chaotically oriented 

cell walls in the cytoplasm can be seen on an ultrathin section of the growing strain 25 cell. There is 

an uneven division by the type of fragmentation, which is accompanied by the formation of small, 

up to 0.5 µm, and very small, around 0.3 µm, cells (Fig. 3). 
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Figure 3. Ultrathin section of cleaving cells of Bacillus aryabhattai str. 25 in a conglomerate (bunch). 

Some cells in the conglomerate are ultrasmall (less than 300 nm in diameter). Transmission Electron 

Microscopy. Bar – 1 µm. 

The B. aryabhattai strain 25 is of great interest for understanding the processes of survival, 

colonization of plant roots and the implementation of the interaction between the bacterium and the 

host plant. Analysis of the genomes of this bacterial species showed that most of them carry genes 

responsible for stimulating plant growth [17]. The peculiarity of strain 25, realized in the 

development cycle, to split into multiple ultra-small forms, can contribute to the rapid and effective 

colonization of the rhizosphere of agricultural plants. 

4. Conclusion 

As a result of the study, a number of bacterial strains were isolated from the soil according to 

their ability to degrade benzoate. Some of these strains have proven to be antagonists of fungal 

phytopathogens. Particularly noteworthy is the P. chlororaphis 3 strain, which was characterized by 

a pronounced ability to control the growth of fungal phytopathogens with comparable efficiency with 

the best bacterial strains used in biological products. In addition, the conducted microscopic studies 

made it possible to find the B. aryabhattai strain 25, which significantly differs in its cytological and 

morphological characteristics from all known representatives of this genus. Thus, both 

biotechnologically significant strains and strains reflecting the microbial diversity of soil microflora 

were obtained. Further studies of their properties are ongoing. 
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