Characterization of *Lactobacillus brevis* with potential probiotic properties and biofilm inhibition against *Pseudomonas aeruginosa*

Vaishali Singh¹, Suman Ganger² and Shweta Patil^{3,*}

^{1, 2, 3}Department of Microbiology, Vivekanand Education Society's College of Arts, Science and Commerce, Mumbai, - 400071, Maharashtra, India.

* Correspondence: shweta.patil@ves.ac.in

Presented at 1st International Electronic Conference on Microbiology 02-30 November 2020 <u>https://ecm2020.sciforum.net/</u>

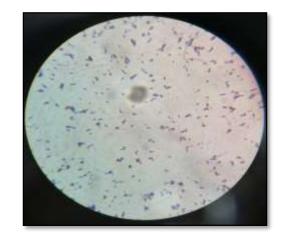
Introduction

- Probiotics live microbial supplement which improve hosts health by maintaining intestinal microbiota.
- Ideal probiotic non-pathogenic, non-toxic, resistant to gastric acid, and produce antibacterial substances. (Gismondo et al.,1999)
- Lactic acid bacteria (LAB) strains used as Probiotics Lactobacillus acidophilus, L. lactis, L. casei S. thermophilus, L.bulgaricus. (Ouwehand et al., 2002)
- Globally Consumption of functional foods or nutraceuticals with potential probiotic microorganisms. (Quinto et al., 2014)
- *Lactobacilli* strains have been extensively studied in biofilm inhibition of pathogenic strains such as *Pseudomonas aeruginosa and Klebsiella pneumoniae*.

Methods

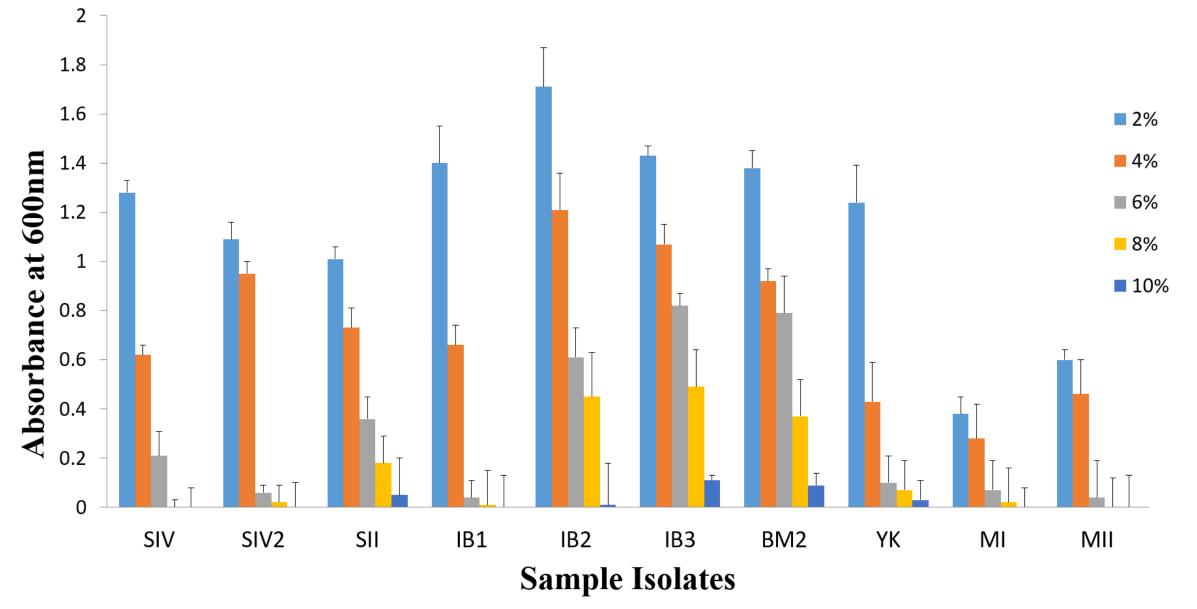
- Screening and Isolation: Isolation on Rogosa SL agar (Hartemink R, Domenech VR, 1997).
- Identification of the isolate: Based on gram staining, catalase test, biochemicals and 16S rRNA sequencing (Bergey's manual Volume 2).
- Determination of probiotic potentials of LAB: Tolerance to NaCl, bile, low pH and lysozyme, antibiotic susceptibility testing, cell surface hydrophobicity (Prabhurajeshwar, C. 2017).
- Antimicrobial activity of *L. brevis* against *S. aureus, E.coli, P. aeruginosa*, *K. pneumoniae* by scrape and streak method (Gillies, R. R., & amp; Govan, J. R. 1966).
- Antibiofilm activity of *L. brevis* against *Pseudomonas aeruginosa* and *Klebsiella pneumoniae* determined by crystal violet assay (Mathkhury HJF.2011).
- Stability of *L. brevis* at 4°C and at 27°C.
- Stability in ice-cream by determining their viability onto MRS agar after 1 week incubation.

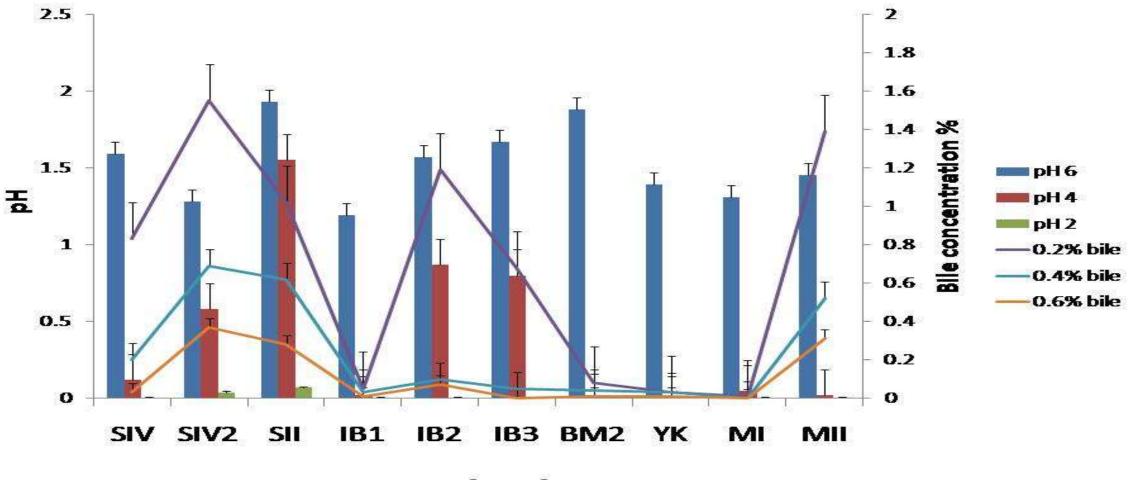
Results


Screening and Isolation of Lactic acid bacteria

Ten isolates : MI, MII, BMI, SII, SIV, SIV2, IB1, IB2, IB3 and YK grew on Rogosa SL agar were selected for probiotic potential.

Biochemical identification: catalase, oxidase and in IMViC test negative.




White, circular, opaque colonies observed.

Gram positive short rods

Sodium chloride tolerance of isolates

Tolerance of Isolates to varying pH and Bile concentration

Sample Isolates

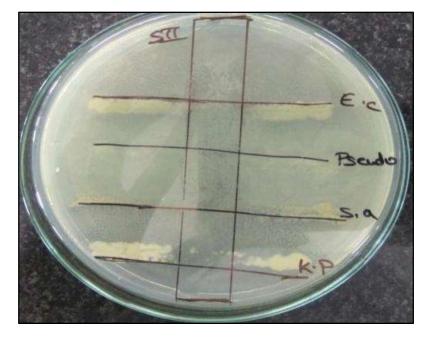
Maximum survival rate after exposure of 100ug/ml lysozyme – IB2(77.4%), SII (58.6%).

Isolate SII gave promising results as a candidate for "Probiotic" from the previous results.

Antibiotic susceptibility test of SII:

- Resistant towards amikacin, ciprofloxacin, gentamicin and vancomycin
- Very less sensitivity: ampicillin and tetracycline.

Cell surface hydrophobicity


• Hydrophobicity % of SII to n-hexane was found to be **5.03%**

Antimicrobial activity

• Isolate SII showed inhibitory effect towards all indicator strains such as *E. coli, K. pneumoniae, S. aureus, P. aeruginosa.*

Stability

• SII was stable at lower temperatures(4 °C).

Antimicrobial activity of Isolate SII

Antibiofilm activity of SII

• Cell free extracts of SII inhibited biofilm formed by *Pseudomonas aeruginosa* and *Klebsiella pneumoniae*

Indicator	Absorbance at 620nm		
Strains	Test	Control	%
	(CSF)		Inhibition
Klebsiella pneumoniae	0.14	0.18	22.2%
Pseudomonas aeruginosa	0.09	0.19	52.63%

Molecular and genetic analysis of SII

• Lactobacillus brevis ATCC 14869 – Accession no. NR_116238.

P. aeruginosa biofilm inhibition by Isolate SII

Discussion

- *Lactobacillus brevis* was isolated from a sauerkraut sample
- Tolerance to low pH, high NaCl concentration, growth in presence of bile Survival in extreme conditions of intestinal tract (Graciela FVD, 2001)
- Lysozyme tolerance of *L.brevis* Administered orally (Kimoto-Nira, Suzuki, 2008).
- *L. brevis* resistance towards a broader range of antibiotics Can be used in combination with antibiotics (Charteris et al., 1998).
- Inhibition mechanisms bacteriocin, hydrogen peroxide production, lowering pH (Aween et al., $_{2012$).
- Biofilm inhibition Antimicrobial compounds in the cell free supernatant cause death of cells, rendering aggregation of cells (Ben S. et al 2013).

Discussion

- Cell surface hydrophobicity of *L. brevis* Not a prerequisite for a strong adherence capacity (Vinderola et al., 2004).
- Stability of *L. brevis* Refrigerating probiotic will maintain viability and shelf life. (Ananta et al., 2005).
- In other studies, it has been reported that *L. brevis* could be a promising isolate with respect to Probiotic, as well as biofilm inhibition towards other pathogens.
- *L. brevis* ATCC 8287 promising candidate as a probiotic supplement in dairy product (Ronka E.2003).
- Bacteriocin produced by *L. brevis* DF01 Inhibited biofilm formed by *E. coli* and *S. typhimurium* (Kim N, et.al 2018).
- Inhibitory effects of lactobacilli against *P. aeruginosa* and their biofilm formation were investigated (D Shorkri,et.al. 2017).
- L. brevis BBE-Y52 strain potential to be used in oral care products (Fang F.2018).

Conclusion

- *Lactobacillus brevis* is a potential probiotic candidates which can be isolated from dairy food, fermented vegetables etc.
- Probiotics can be used to cure health issues as well as their products can be used in the pharmaceutical industry as well as in food industry.

Future Prospects

- Characterization of Antimicrobial substances produced by *L. brevis*.
- Biofilm inhibition activity towards oral pathogens and other strains.
- As a functional starter culture in dairy products like yoghurt and ice cream can be promising outcomes in the nearest future.

References

- Prabhurajeshwar, Chidre, and Revanasiddappa Kelmani Chandrakanth. "Probiotic Potential of Lactobacilli with Antagonistic Activity against Pathogenic Strains: An in Vitro Validation for the Production of Inhibitory Substances." *Biomedical Journal*, vol. 40, no. 5, (2017), pp. 270–283.
- Mathkhury HJF, Ali AS, Ghafil JA. "Antagonistic Effect of Bacteriocin against Urinary Catheter Associated Pseudomonas Aeruginosa Biofilm." *North American Journal of Medical Sciences*, (2011), pp. 367–370.
- Prasad, J. Gill, H., Smart, J., & Gopal, P. K. "Selection and Characterisation of Lactobacillus and Bifidobacterium Strains for Use as Probiotics." *International Dairy Journal*, vol. 8, no. 12, (1998), pp. 993–1002.
- Gillies, R. R., and J. R. W. Govan. "Typing of Pseudomonas Pyocyanea by Pyocine Production." *The Journal of Pathology and Bacteriology*, vol. 91, no. 2, (1966), pp. 339–345.
- Klayraung, Srikanjana. "Probiotic Properties of Lactobacilli Isolated from Thai Traditional Food." *Scientia Pharmaceutica*, vol. 76, no. 3, (2008), pp. 485–503.
- Rönkä, Elina., Erja M., Maria S., Merja RK., Johannes A., Airi P. (2003). Probiotic and Milk Technological Properties of Lactobacillus Brevis. *International Journal of Food Microbiology*, 83(1), 63–74.
- Slama, Rihab Ben, Bochra K., Tarek Z., Kamel C., Amina B. (2013). Anti-Listerial and Anti-Biofilm Activities of Potential Probiotic Lactobacillus Strains Isolated from Tunisian Traditional Fermented Food. *Journal of Food Safety*, 33(1), 8–16.
- Shokri, D., Khorasgani, M. R., Mohkam, M., Fatemi, S. M., Ghasemi, Y., & Taheri-Kafrani, A. The Inhibition Effect of Lactobacilli Against Growth and Biofilm Formation of Pseudomonas aeruginosa. *Probiotics and Antimicrobial Proteins*, (2017). *10* (1), 34-42.

Characterization of *Lactobacillus brevis* with potential probiotic properties and biofilm inhibition against *Pseudomonas aeruginosa*

THANK YOU

Acknowledgements:

Authors are thankful to Vivekanand Education Society's College of Arts, Science and Commerce – Central Instrumentation Facility (funded by DST-FIST grants) for their infrastructure and the teaching and non-teaching staff of the Microbiology department for their constant support.