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Abstract: Machine learning can be used as an alternative to similarity algorithms such as BLASTp
when the latter fail to identify dissimilar antimicrobial-resistance genes (ARGs) in bacteria; however,
determining the most informative characteristics, known as features, for antimicrobial resistance (AMR)
is essential to obtain accurate predictions. In this paper we introduce a feature selection algorithm
called symmetrical uncertainty-qualitative mutual information (SU-QMI) which selects features based
on estimates of their relevance, redundancy, and interdependency. We use these together with graph
theory to derive a feature selection method for identifying putative ARGs in Gram-negative bacteria. We
extract physicochemical, evolutionary, and structural features from the protein sequences of five genera
of Gram-negative bacteria–Acinetobacter, Klebsiella, Campylobacter, Salmonella, and Escherichia–which
confer resistance to acetyltransferase (aac), β-lactamase (bla), and dihydrofolate reductase (dfr). Our
SU-QMI algorithm is then used to find the best subset of features, and a support vector machine (SVM)
model is trained for AMR prediction using this feature subset. We evaluate performance using an
independent set of protein sequences from three Gram-negative bacterial genera–Pseudomonas, Vibrio,
and Enterobacter–and achieve prediction accuracy ranging from 88% to 100%. Compared to the SU-QMI
method, BLASTp requires similarity as low as 53% for comparable classification results. Our results
indicate the effectiveness of the SU-QMI method for selecting the best protein features for AMR prediction
in Gram-negative bacteria.

Keywords: Antimicrobial resistance; symmetrical uncertainty; qualitative mutual information; feature
selection; machine learning; BLASTp.

1. Introduction

Thousands of people in the United States die each year due to infections by antimicrobial-resistant
bacteria [1,2]. Convergent evolution or ancient divergence can lead to genes in different organisms that
encode proteins with related structure and function, but with limited sequence similarity. Consequently,
when new antimicrobial-resistance genes (ARGs) emerge in a population, it may be difficult or impossible
to recognize these genes based on conventional sequence similarity algorithms. Sequence matching
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algorithms such as BLASTp can be applied to find ARGs in bacterial genomes; however, such algorithms
do not work well for dissimilar sequences unless very relaxed matching criteria are used, but this leads
to inclusion of many potential false positives [3]. Machine learning algorithms are not restricted to
sequence similarity and, thus, a machine learning method is a promising alternative for identifying
unrecognized ARGs in bacteria. The development of a machine learning algorithm capable of accurate
prediction of AMR involves identifying and using the most important features from known ARGs and
non-ARGs. In this work we introduce a graph-theoretic feature selection algorithm called symmetrical
uncertainty-qualitative mutual information (SU-QMI) in which a feature is selected based on estimates
of its relevance, nonredundancy, and interdependency. SU-QMI is based on the concepts of symmetrical
uncertainty [4], qualitative mutual information [5], and graph theory for predicting AMR in Gram-negative
bacteria. Symmetrical uncertainty (SU) measures the division of information between two features w.r.t.
all their information. The qualitative mutual information (QMI) of a feature is the product of its qualitative
score and the information it contributes to classification. Graph theory is the study of the relationships
among objects (nodes) where the objects are connected by links (edges). In our case, the objects are features.
A support vector machine (SVM) model is developed for predicting putative ARGs using the feature
subset obtained by means of the SU-QMI algorithm. The performance of our work is compared with
another feature selection method−RReliefF [6] which also considers feature interactions−to show the
effectiveness of SU-QMI. In addition, the performance of our machine learning model is compared with
BLASTp results.

2. Material and Methods

2.1. Data Collection

We considered the same datasets described in [3]. To summarize, we gathered 33, 43, and 28
ARGs from Acinetobacter, Klebsiella, Campylobacter, Salmonella, and Escherichia, which confer resistance to
acetyltransferase (aac), β-lactamase (bla), and dihydrofolate reductase (dfr), respectively. We also collected
71 non-ARGs (64 essential genes and 7 histone acetyltransferases) from these Gram-negative bacteria.
These ARG (positive) and non-ARG (negative) datasets were used to train our machine learning model.
To measure the predictive power of our final classifier, we used 10 aac, 43 bla, and 8 dfr ARGs and 33
non-ARGs (25 essential genes and 8 histone acetyltransferases) from the three Gram-negative bacterial
genera Pseudomonas, Vibrio, and Enterobacter as the test datasets.

2.2. Protein Features

We considered a 621D feature vector for each protein sequence as described in [3,7,8]. Briefly, we
created a 20D (‘D’ means dimension) amino acid composition feature vector where each of the 20 feature
values is the fraction of a particular amino acid in a protein sequence. The composition, transition, and
distribution (CTD) model [9] is used to generate 168D global physicochemical features from a protein
sequence. We obtained 400D features from the position-specific scoring matrix (PSSM); this feature vector
was computed based on the transition scores between neighboring amino acids in a sequence. Finally, 33D
features were obtained from the secondary structure and structure probability matrix of the sequences.

2.3. Feature Selection

Our feature selection algorithm is based on the concepts of SU, QMI, and graph theory. SU measures
the relevance between features fi (i = 1, 2, · · · , n) and the class C where n is the total number of features.
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The relevance is calculated using Eq. 1 where I and H are mutual information and entropy, respectively.
SU provides a normalized relevance value to resist the bias of features having large values.

RV( fi, C) = 2
I( fi, C)

H( fi) + H(C)
(1)

QMI is estimated from the product of the utility function U and mutual information. The utility function
U is the feature importance. The ‘Mean Decrease Gini’ of a feature w.r.t. class C using a random forest
model is estimated to determine feature importance. The Gini index (GI) [10] indicates the homogeneity of
the data. Low and high GI values correspond to high homogeneity and high heterogeneity, respectively.
The higher the ‘Mean Decrease Gini,’ the greater the feature importance. Thus, the normalized redundancy
or interdependency ratio RI( fi, f j) between two features fi and f j is computed as follows:

RI( fi, f j) = 2
I( fi; C| f j)−Ui × I( fi; C)

H( fi) + H(C)
, i = 1, 2, · · · , n; j = 1, 2, · · · , n; i 6= j (2)

Here, I( fi; C| f j) is the conditional mutual information shared by fi and C when f j is given, and Ui is the
feature importance of feature fi. RI( fi, f j) > 0 indicates feature interdependency.

Algorithm 1 gives the details of our SU-QMI feature selection method. We consider a complete

Algorithm 1: SU-QMI algorithm

Input : A complete graph G = (V, E) where V is the set of all features and E denotes the edges
representing the normalized interdependency or redundancy value between vertices
(features), feature set F, class C, number of features to be selected k, and queue Q.

Output : Best feature subset Q
1 Q := ∅;
2 w( f ) := 1 for all f ∈ F;
3 calculate Rv( f ) for all f ∈ F using Eq. 1;
4 select node fh with largest L( f );
5 Q := Q ∪ { fh};
6 F := F \ { fh};
7 if |Q| 6= k then
8 for each node fs ∈ F do
9 compute score( fs) using Eq. 3;

10 select node fh with largest score( fs);
11 Q := Q ∪ { fh};
12 F := F \ { fh};
13 end
14 end
15 output Q;

graph G = (V, E) where V is the set of all features and E is the set of edges denoting the normalized
interdependency or redundancy values between nodes (features). Suppose we have a node set F =

{ f1, f2, · · · , fn} and we want to select k nodes from F. Initially, equal weights are assigned to each node
(line 2). The node having the highest normalized relevance value is selected first and is placed in the queue
Q where the maximum length of Q can be k (lines 3−5). Next, we calculate the scores of the remaining
nodes using the relevance, redundancy/interdependency values, and weights of the selected nodes (lines
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6−14). The score of a candidate feature fs is calculated using Eq. 3, where Wqi is the weight of the selected
node qi.

score( fs) = RV( fs, C) ∑
qi∈Q

RI( fs, qi)Wqi (3)

Weights are calculated to give more weight to the node selected prior to the other nodes that are chosen.
The weight Wqi is calculated using the rank order centroid method [11] as shown in Eq. 4, where rj is the
rank of the j-th nodes of Q, and t is the total number of nodes in Q.

wqi =
1
t

t

∑
j=1

(
1
rj
) (4)

The node that has the highest score is selected and queued in Q (line 10). This process is continued until
the best k features have been selected. Note that the most important features among the selected k features
are at the top of Q, and the least important features are at the bottom of Q.

2.4. Data and Code Availability

All data and scripts for this work can be found at https://github.com/abu034004/SU-QMI.

(a) aac (oversampling) (b) bla (oversampling) (c) dfr (oversampling)

(d) aac (undersampling) (e) bla (undersampling) (f) dfr (undersampling)

Figure 1. Accuracy comparison between SU-QMI and RReliefF.



Proceedings 2020, 2020, 6 5 of 6

3. Results

3.1. Comparative Analysis of the SU-QMI Feature Selection Method

We compare the performance of our SU-QMI approach with that of RReliefF. For RReliefF, we
considered the same parameter settings (i.e., 5 neighbors and 30 instances) as suggested in [6]. Figure
1 shows results for the two approaches for both oversampling and undersampling. The performance
of SU-QMI is generally better than that of RReliefF in terms of maximum accuracy w.r.t. the number of
features. Although in two cases RReliefF was able to achieve the same accuracies as the SU-QMI approach,
the former required more features.

3.2. Identification of Antimicrobial-Resistance Proteins in Independent Datasets

To measure the predictive power of the SU-QMI method on unknown sequences, we trained an
SVM model with all the sequences from the Gram-negative bacteria Acinetobacter, Klebsiella, Campylobacter,
Salmonella, and Escherichia and then used the classifier to test sequences from three Gram-negative bacterial
genera – Pseudomonas, Vibrio, and Enterobacter. The results are shown as confusion matrices in Fig. 2. We

(a) aac (oversampling) (b) bla (oversampling) (c) dfr (oversampling)

(d) aac (undersampling) (e) bla (undersampling) (f) dfr (undersampling)

Figure 2. Confusion matrices obtained for the independent datasets.

obtained accuracies of 0.88, 0.97, and 1 for the three AMR classes, respectively, for the oversampling case,
and it is worth noting that our method successfully classified all non-ARG samples of acetyltransferase as
negative samples. For the undersampling case, accuracies of 0.86, 0.97, and 1 were obtained, but 2 of the 8
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non-ARG acetyltransferases were incorrectly predicted to be positive. Based on these results, our SU-QMI
algorithm performs better with oversampling.

We also compared the SU-QMI algorithm with BLASTp (https://blast.ncbi.nlm.nih.gov/Blast.cgi?
PAGE=Proteins) using default parameter settings. The performance of both approaches was comparable
for aac and dfr with a percent identity ≥ 90 for BLASTp; however, in order to identify the same number
of true positives as SU-QMI using oversampling for bla (Fig. 2), the percent identity for BLASTp was
53%, and this threshold produced six false positives. Therefore, when classifying bla sequences, the false
positive rate was higher for BLASTp than for SU-QMI.

4. Discussion

In this paper we presented a feature selection method SU-QMI based on SU, QMI, and graph theory to
select an effective feature subset to use with a machine learning model to predict ARGs in Gram-negative
bacteria. From the results, our SU-QMI algorithm is able to identify the most important features. We
believe this is because feature selection is based not only on relevance and redundancy estimates, but also
on interdependency among features. Our algorithm results in accuracies between 88% and 100% for three
AMR classes and shows overall better performance than the RReliefF and BLASTp methods.
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