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Abstract: Antimicrobial resistance is driving pharmaceutical companies to investigate different
therapeutic approaches. One approach that has garnered growing consideration in drug development is
the use of antimicrobial peptides (AMPs). Antibacterial peptides (ABPs), which occur naturally as part of
the immune response, can serve as powerful, broad-spectrum antibiotics. However, conventional
laboratory procedures for screening and discovering ABPs are expensive and time-consuming.
Identification of ABPs can be significantly improved using computational methods. In this paper,
we introduce a machine learning method for the fast and accurate prediction of ABPs. We gathered more
than 6000 peptides from publicly available datasets and extracted 1209 features (peptide characteristics)
from these sequences. We selected the set of optimal features by applying correlation-based and random
forest feature selection techniques. Finally, we designed an ensemble gradient boosting model (GBM) to
predict putative ABPs. We evaluated our model using ROC curves, calculating the area under the curve
(AUC) for several different models for comparison, including a recurrent neural network, a support
vector machine, and iAMPpred. The AUC for the GBM was ∼0.98, more than 3% better than any of the
other models.

Keywords: Antibacterial peptides; ensemble gradient boosting; drug discovery

1. Introduction

Antimicrobial resistance poses a severe health threat because it compromises treatment of a wide
range of infections caused by bacteria, viruses, or fungi [1,2]. Moreover, bacterial infections can be resistant
to multiple drugs, and resistance can be readily transferred to other bacteria over a short period. As a result,
pharmaceutical companies have started investigating different therapeutic approaches. One approach
that has generated much interest is the use of antimicrobial peptides (AMPs) [3]. Antibacterial peptides
(ABPs) occur naturally as part of the immune response to combating microbial pathogens, and they can
serve as powerful, broad-spectrum antibiotics. However, the conventional wet laboratory procedures
used to screen peptides for the detection of ABPs are time-consuming and expensive [4]. In addition,
ABPs evolve rapidly, and their small size, generally between 20 and 50 amino acids [5], makes them
difficult to find via alignment-based detection approaches. Identification of ABPs can be significantly
improved using computational methods. A promising computational approach is the use of a supervised
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machine learning model that uses the physicochemical properties of ABPs. For example, in [6], the authors
used pseudo amino acid composition and fuzzy k-nearest neighbors to develop a tool called iAMP-2L to
predict AMPs. Later in [4], the authors developed an online prediction server called iAMPpred which
increases the prediction performance by integrating compositional and physicochemical properties with
structural features (features are peptide characteristics) and using a support vector machine (SVM) model.
A semi-supervised machine learning approach was proposed by researchers in [7]. The authors used the
DBSCAN algorithm for clustering and physicochemical properties as features. A recent work utilized an
ensemble algorithm which integrates SVM, k-nearest neighbors, and four tree-based models [8]. In this
work, extremely randomized tree algorithms were used for feature selection, and the resulting feature
set was used to predict antihypertensive peptides (AHTPs). The features were used with an ensemble
learner created by integrating all seven of the models. In another study, researchers proposed a tool called
Deep-AmPEP30 to improve short AMP prediction using deep learning [9]. They developed the tool using
an optimal feature set based on reduced amino acid composition together with a convolutional neural
network.

In this paper, we introduce a machine learning method which predicts ABPs quickly and accurately.
We gathered more than 6000 peptides from publicly available datasets and extracted 1209 features from
these sequences. We selected the optimal features by applying correlation-based and random forest feature
selection techniques. Finally, we designed an ensemble gradient boosting model (GBM) to predict putative
ABPs. We evaluated our model using ROC curves, calculating the area under the curve (AUC) for several
different models for comparison, including a recurrent neural network (RNN), a support vector machine
(SVM), and iAMPpred. The AUC for the GBM approach was ∼0.98, more than 3% better than any of the
other models.

2. Methods

In this section, we explain the overall pipeline for predicting ABPs using the gradient boosting model
in detail.

2.1. Data collection and feature selection

We selected antibacterial peptides and non-antibacterial peptides from the data sets available through
AmPEP [10] and DRAMP, the latter of which is a data repository of antimicrobial peptides [11]. Removal
of duplicates resulted in a total of 6661 peptides of which 3423 were ABPs and 3238 were non-ABPs. Next,
we used iFeature [12], a Python package, to extract features from the peptide sequences. iFeature provides
a comprehensive toolkit for generating numerical feature representation schemes from peptide sequences.
It is capable of calculating and extracting a broad range of important sequence encodings quickly. For
the >6000 peptides in our data set, iFeature calculated and extracted 1209 features in just a few minutes.
Table 1 summarizes these features. Amino acid composition (AAC) indicates the occurrence frequency
of amino acids in sequences. Dipeptide composition (DPC) is the frequency of all possible permutations
of two amino acids adjacent to each other. Dipeptide deviation from the expected mean (DDE) shows
the dipeptide composition variance for a theoretical mean. Grouped amino acid composition (GAAC)
categorizes the amino acids into five classes based on their physicochemical properties, e.g., hydropathy,
charge, and molecular size. Grouped dipeptide Composition (GDPC) encoding is another variation of
the DPC descriptor, and grouped tripeptide composition (GTPC) encoding is a tripeptide composition
descriptor variation, which generates 125 descriptors. The composition, transition, and distribution (CTD)
features represent the amino acid distribution patterns of a specific structural or physicochemical property
in a protein or peptide sequence. The composition descriptor (CTDC) consists of values of the global
compositions (percentages) of a protein’s polar, neutral, and hydrophobic residues. Finally, the distribution
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Table 1. List of peptide features.

Feature Description Dimension
AAC Amino acid composition 20
DPC Dipeptide composition 400
DDE Dipeptide deviation from expected mean 400
GAAC Grouped amino acid composition 5
GDPC Grouped dipeptide composition 25
GTPC Grouped tripeptide composition 125
CTDC Composition 39
CTDD Distribution 195

Total Number of Features 1209

(a) (b)

Figure 1. a) Two box plots showing values for an important feature for ABPs and non-ABPs. The median
value (indentations in box) for non-ABPs is ∼90 while for ABPs it is is close to 25. Importantly, the boxes
do not overlap, demonstrating that for >50% of the peptides, the feature values differ. b) For a feature of
low importance, the distributions are similar.

descriptor (CTDD) comprises five values for each of the three groups (polar, neutral, and hydrophobic),
namely the corresponding fraction of the entire sequence, where the first residue of a given group is
located, and where 25, 50, 75 and 100% of occurrences are contained.

Not all features shown in Table 1 are informative, i.e., they don’t discriminate between ABPs and
non-ABPs, and some of the features provide redundant information. To determine an optimal feature set
and to reduce the number of features, first we considered features with high correlation. We calculated
Pearson’s correlation coefficient for all features and removed one of each pair of features with a correlation
>0.95. This reduced the number of features to 561. Next we used a random forest approach to determine
the most relevant features. The random forest approach ranks the importance of features by determining
how much the performance of the random forest decreases when a feature is removed. The more a feature
lowers the impurity, the more influential the feature is. Figure 1 illustrates the distribution of two different
peptide features. Figure 1a shows that the interquartile ranges are distinct for an important feature for
ABPs and non-ABPs, while for features of low importance (Fig. 1b), the distribution is similar. In random
forests, each feature’s impurity decrease can be averaged across trees to determine the final importance of
the feature [13].
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Figure 2. The fraction of peptide information available in 561 features is shown as a function of the
number of features. The top 200 features were used in this work, and they represent ∼90% of the available
information. The addition of 100 more features only adds 5%.

We retained the 200 most informative features which account for∼ 90% of all the sequence information
available in the 561 features. Figure 2 displays the cumulative contributions of features; an additional 100
features increases sequence information by only 5%.

2.2. Ensemble Gradient Boosting Model

Gradient boosting [14] is an ensemble boosting model that learns from previous mistakes, learning
directly from the residual error. First, it trains a decision tree. Then the decision tree that is lately trained
is used to predict. Next, this decision tree’s pseudo residual error is computed and saved as the new y
(labels). The lattar two steps are iterated until the number of trees that set to train is reached. Algorithm 1
demonstrates the GBM for a training set {(xi, yi)}n

i=1, where xi is a data point and yi is its label, ABP or
non-ABP for our work.

Algorithm 1: Gradient Boosting Algorithm

Data: Training data {(xi, yi)}n
i=1, where xi is a datapoint and yi is the label of xi

Input: Number of iterations M, logarithmic loss function, and decision tree base learner (h(x))
Output: Final decision function FM

1 Initialize the model F0(x) := argminγ

n

∑
i=0

L(yi, γ), m := 0

2 while m 6= M do
3 Calculate the pseudo residual error rim := −[ ∂L(yi ,F(xi))

∂F(xi)
]F(x)=Fm−1(x) f or i = 1, ..., n

4 Fit a new base learner hm(x), using the new training set {(xi, rim)}n
i=1

5 Find best gradient descent step size γm
6 Update the model Fm(x) := Fm−1(x) + γmhm(x)
7 m := m + 1

8 return FM
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3. Results and Discussion

We divided our data sets into two subsets in order to perform cross-validation. The training subset,
75% of the data, was used to train the model. The remaining 25% of the data formed the validation, or test,
subset which was used to analyze the performance of the model. Receiver operating characteristic (ROC)
curves [15] were used to evaluate our model and to compare it to the performance of other models. An
ROC curve gives the relationship between the false positive rate (FPR) and the true positive rate (TPR) at
several threshold settings. The TPR (Eq. 1) is the ratio of true positive (TP) results and all possible positive
data points, i.e., the sum of the true positive and false negative (FN) values. Similarly, the FPR (Eq. 2)
is the ratio of false positive (FP) results and all possible negative data points, i.e., the sum of the false
positive and true negative (TN) values. For our work, TPs are peptides correctly predicted as ABPs, TNs
are peptides correctly predicted as non-ABPs, FPs are non-ABP peptides incorrectly predicted to be ABPs,
and finally, FNs are ABPs incorrectly identified as non-ABPs.

TPR =
TP
P

=
TP

TP + FN
(1)

FPR =
FP
N

=
FP

FP + TN
(2)

Figure 3 gives the ROC curves for our GBM method, an SVM model, a recurrent neural network
(RNN) using long short-term memory (LSTM) [16], and iAMPpred which is an online prediction server
that increases the prediction performance by integrating compositional and physicochemical properties
with structural features and uses a support vector machine (SVM) model. The area under the curve (AUC)
for our GBM model is 98.5% which is approximately 3.5% more than those of the other models.

Figure 3. ROC curves for our GBM approach and three other approaches. Areas under the curve (AUCs)
are shown for each model in the legend

4. Conclusions

Antibacterial peptides are a promising new approach for treating infections caused by bacteria,
especially when antibacterial resistance is a problem. However, the laboratory work required to identify
ABPs is both time-consuming and expensive. A machine learning model could assist with this work by
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predicting ABPs that can then be verified experimentally. In this work, we have proposed such a model,
an ensemble gradient boosting model, and we have shown that it gives more accurate results than other
models.

Conflicts of Interest: The authors declare no conflict of interest
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AMP Antimicrobial peptides
ABP Antibacterial peptides
GBM Gradient Boosting Machine
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