VANILLIN ACRYLATE-BASED PHOTOCROSS-LINKED POLYMERS: SYNTHESIS AND INVESTIGATION OF PROPERTIES

Aukse Navaruckiene, Greta Motiekaityte, Jolita Ostrauskaite*

Department of Polymer Chemistry and Technology, Kaunas University of Technology, Lithuania

* Contact address: jolita.ostrauskaite@ktu.lt

THE AIM

The aim of this work was to investigate the kinetics of free-radical photopolymerization of vanillin diacrylate and vanillin dimethacrylate using ethyl(2,4,6trimethylbenzoyl) phenylphosphinate as photoinitiator, as well as rheological properties of the photocross-linked polymers by real-time photorheometry. The influence of the resin composition to UV/VIS curing time and rigidity of the resulted polymers and their thermal properties was investigated.

	PHOTOC	ROSS-LINK	NG* Photoir	nitiator:		DEPENDENCE OF S ON RESIN (TORAGE MODULUS	 G'
Vanillin dimethacrylate	VDMA) Vanillin di N Vanillin derivative	iacrylate (VDA) Amount of TPOL, mol.%	Ethyl(2,4,6-trimethy phosphina Solvent	ylbenzoyl) phenyl ate (TPOL)	dulus G. (Pa)	C4 C5 C6	10 ⁸ 10 ⁶ 10 ⁴ 10 ⁴ 10 ²	C1 C4 C7

C1	VDA	1	-
C2	VDA	1	DCM
C 3	VDMA	1	DCM
C4	VDA	3	-
C5	VDA	3	DCM
C6	VDMA	3	DCM
C7	VDA	5	-
C8	VDA	5	DCM
C9	VDMA	5	DCM

Photocross-linking was performed using 500 W Helios Italquartz lamp (250-450 nm, 310 mW·cm⁻²). (DCM – dichloromethane)

> Loss modulus | Gel point* Resin Complex Storage modulus G', G", MPa viscosity t_{gel}, s η*, MPa·s MPa **C1** 7.35 0.154 6.34 10 **C2** 2.35 20 13.40 0.217 **C3** 13.00 0.208 1.65 6 0.290 2.70 **C4** 18.10 6 **C5** 1.64 12 11.30 0.180 **C6** 18.20 0.290 2.94 5 5.78 10 **C7** 0.230 13.30 **C8** 14 14.50 0.230 2.02 **C**9 0.319 3.36 19.80 6

Dependencies of storage modulus G' of the resins C4, C5 and C6 with 3 mol.% of photoinitiator on irradiation time

Dependencies of storage modulus G' of the VDA-based resins C2, C5 and C8 with different amount of photoinitiator on irradiation time

Dependencies of storage modulus G' of the VDA-based resins C1, C4 and C7 with different amount of photoinitiator on irradiation time

Dependencies of storage modulus G' of the VDMA-based resins C3, C6 and C9 with different amount of photoinitiator on / irradiation time /

THERMAL PROPERTIES

Glass transition temperature (T_g) of the photocross-linked polymers was estimated by differential scanning calorimetry (DSC). Thermal decomposition temperature at the weight loss of 10% $(T_{dec.-10\%})$ was determined by thermogravimetrical analysis (TGA).

Polymer	T _{dec−10%} , °C	T _g , °C	
C4	350	87	

RHEOLOGICAL CHARACTERISTICS OF RESINS

Dependencies of storage modulus G', loss modulus G'', loss factor tan δ , and complex viscosity η^* of resin C4 on irradiation time

ACKNOWLEDGEMENT

This research was funded by the EU ERDF, through the INTERREG BSR Programme, (ECOLABNET project #R077).

CONCLUSIONS

- The curing time was the shortest and the most rigid polymers were obtained when vanillin dimethacrylate or vanillin diacrylate and ethylphenyl(2,4,6-trimethylbenzoyl) phosphinate were used in the compositions without dichloromethane.
- The shortest reaction time was obtained when 3 mol.% of the ethylphenyl(2,4,6-trimethylbenzoyl) phosphinate were used in the compositions.
- Addition of dichloromethane into the resins resulted in less rigid polymers and longer UV curing time.
- Vanillin diacrylate-besed polymer without any solvent performed higher thermal characteristic values.