[4+4] anthracene photodimerization for controlled folding of single chain polymer nanoparticles

Anastasia Kislyak,^{1,2} Francisco J. Arraez,² Daniel Kodura,¹ Fabian Blößer,¹ Hendrik Frisch,¹ Paul H. M. Van Steenberge,² Dagmar R. D'hooge,^{2,3} Christopher Barner-Kowollik¹

¹Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology

2 George Street, Brisbane, QLD 4000 (Australia) ²Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University

Technologiepark 125, Zwijnaarde,

Ghent 9052, Belgium

³Centre for Textile Science and Engineering, Department of Materials, Textiles and Chemical Engineering, Ghent University

Technologiepark 70A, Zwijnaarde,

Ghent 9052, Belgium

Introduction

Single chain nanoparticles (SCNPs) have promising applications in a variety of fields, most notably in catalysis. Current interest lies in achieving tailored control over the resulting structure and size of the nanoparticles, which requires a high level of control over their synthesis. Reversible photochemical reactions possess the benefit of such control over the reaction in space and time.¹

Herein, a kinetic model for small molecule $\int_{2000}^{1} e^{-2000}$ photochemical reactions is developed for the dependent kinetic parameters are determined.^{2,3} The model is currently being extended for the application in the SCNP folding.

Future work: adaptation for single chain nanoparticlesReferences375 nm
diluted375 nm
diluted $k_{+app}(c_{A,sol,t}, c_{A,SCNP,t}) = \frac{\frac{k_2}{k_{-1}} \mathcal{J}_{A,smn}(c_{A,sol,t})}{(\frac{k_2}{k_{-1}} + \frac{k_3}{k_{-1}})c_{A,SCNP,t} + 1} \mathbf{Z}_t$ 1. H. Frisch, D. Kodura, F.R. Bloesser, L. Michalek, C. Barner-Kowollik,
Macromol. Rapid Commun., 2020, 41, e1900414.2. A. Kislyak, H. Frisch, M. Gernhardt, P. H. M. Van Steenberge, D. R.

- z represents restrictions imposed on the reaction due to the attachment on the polymer chain
- D'hooge and C. Barner-Kowollik, Chem. Eur. J., 2019, 26, 478-484.
- A. Kislyak, D. Kodura, H. Frisch, F. Feist, P. H. M. Van Steenberge, C. Barner-Kowollik and D. R. D'hooge, *Chem. Eng. J.*, 2020, 402, 126259.

Conclusions

- a kinetic model for small molecule photochemical reaction is developed for reversible anthracene dimerization in solution
- determination of wavelength dependent kinetic parameters for anthracene dimerization and its reverse reaction performed from 260 to 330 nm
- the small-molecule model is currently being extended for the application in the singlechain polymer nanoparticle folding by using polymer chains synthesised with anthracene units incorporated

Acknowledgements

C.B.K. acknowledges the Queensland University of Technology (QUT) for continued support and the Australian Research Council (ARC) for a Laureate Fellowship. P.H.M.V.S. acknowledges the Scientific Research Flanders (FWO) through a postdoctoral fellowship. A.K., D.K. and F.B. acknowledge Queensland University of Technology (QUT) for funding their PhD studies. A.K. acknowledges Ghent University (UGent) for funding her PhD studies. Some of the data reported in here were obtained at the Central Analytical Research Facility (CARF) operated by the Institute for Future Environments (subdivision of QUT).

Soft matter materials group

The First International Conference on "Green" Polymer Materials 2020, online 05/11/2020 - 25/11/2020