Fractionation, Chromatographic Screening and Quantification of bioactive compounds from the imperative medicinal plant Salvia officinalis

Shadma Wahab¹, Sarah Muryi Alshahrani¹, Safiah Ali Asiri ¹, Linah Masoud Alyami¹, Khawlah Habib^{1,} Areej Mohmmed¹

¹Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia.

Background

- Screening of ethanobotanical plants is a pre-requisite to evaluate their therapeutic potential and it can lead to the isolation of new bioactive compounds. ^[1]
- Salvia officinalis is one of the most popular medicinal and culinary herbs used in the Arab world.^[2]
- In general it contains chemical constituents mainly

١	Fractionation		Result-II					
1	Crude Ethanolic extract Hexane and Water (2:1) Hexane Layer Aqueous Layer	ĺ	Table-2 : 7 S. officinalis	Thin Layer Chro Solvent system	omatogra Extract R _f value	phic studies Standard R _f value		
	Hexane fraction Chloroform: Water (2:1) Chloroform layer Aqueous Layer		Methanol etract	Ethyl acetate: water: Methanol (10: 1: 1.35)	3 Spots- 0.28 0.54 0.91	0.27 (R) 0.91 (Q)	MQR	

Hypothesis

Present study including the qualitative and quantitative investigation of phytochemicals of S.officinalis growing in the Asir region of Saudi Arabia may aid in the exploration of the bioactive elements that are responsible for the therapeutic properties of Sage.

Preparation of Extract

70 g of leaf powder was placed in a stoppered container with the solvent ethanol 95%.

Allowed to stand at room temperature for a period of seven days with frequent agitation to get the extract from Maceration technique.

> The mixture was then strained, the marc is pressed and filtered

			June				
			orange spot				
		Wagner test	Reddish	-	+	+	+
			brown ppt				
		Mayer test	Turbid	-	+	+	+
			cream				
			extract is				
4		C1 . 1	obtained				
4	lest for	Shinoda test	Effervescenc	-	-	+	
	navonoids		to the red				
			color				
5.	Test for	Killer-Killani test	Reddish				
	glycosides		brown color	-	-	_	-
		Borntrager's test	Rose red				
			color appears				
			in upper				
			layer				
6.	Test for	Gelatin solution	white	-	-	+	+
	Tannins	test	precipitate				
		Ferric chloride	blue color	-	-	+	+
		test					
7.	Test for	Molisch's test	violet ring	-	-	+	+
	Carbohydra						
		T -11'					
		Fenling's solution	red	-	-	+	+
		Barloed's test	red	-	-	+	+
0	To at form	C = 11- = = = = = = = = = = = = = = = = =					
8.	Sterols	Salkowaski	brown ring	+		+	+
		Libermann-	Brown ring		+		
		reaction					

Observation and Conclusion

 \checkmark The phytochemical screening revealed that S. officinalis growing in the Asir region possess different classes of chemical compounds which may be attributed to different pharmacological properties of this plants.

 \checkmark The TLC analysis confirmed the presence of rutin and quercetin in the methanol fraction.

 \checkmark Quantitative estimation proved that the leaf contains a promising amount of flavonoid which may be the reason that sage has found increasing application in food formulations.

 \checkmark Further work of this study would be the correlation of the relationship of these active constituents for possible biological activities.

References

✓ A. Ghorbani, M. Esmaeilizadeh Pharmacological properties of Salvia officinalis and its components, Journal of Traditional and Complementary Medicine, 2017, 7 433-440.

6th International Electronic Conference on **Medicinal Chemistry** 1-30 November 2020

