COMPUTATIONAL PREDICTION AND EXPERIMENTAL CONFIRMATION

OF SOLID SOLUTION FORMATION FROM DIFFERENT NITROBENZOIC ACID DERIVATIVES AND THEIR ISOMERS

Kristaps Saršūns*, Agris Bērziņš

Faculty of Chemistry, University of Latvia, Riga, Latvia; kristaps.sarsuns@lu.lv

By graphically interpreting the results, it can be clearly seen in which cases the isostructural and/or replaced structure is more energetically advantageous

10,0

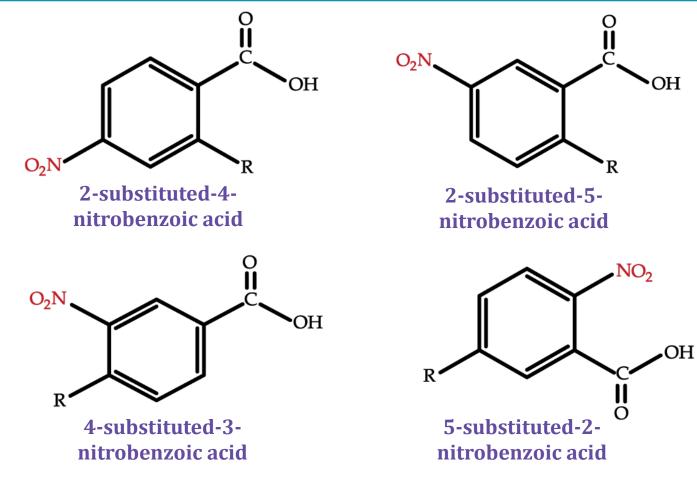
-20,0

-30,0

40H3NBA -50,0

Energy / kJ·mol⁻¹

-115


-120

Energy / kJ·mol⁻¹

Cl-iso-CH₃

Introduction

Several nitrobenzoic acid (NBA) derivatives (-chloro, -methyl, -hydroxyl) and their isomers (see below), such as 2-substituted 4nitrobenzoic acid (24NBA), 2-substituted 5-nitrobenzoic acid (25NBA), 4-substituted 3-nitrobenzoic acid (43NBA) and 5substituted 2-nitrobenzoic acid (52NBA), were selected as model compounds because of their availability and chemically similar structures¹.

R = chlorine atom (-Cl), hydroxyl group (-OH) or methyl group (-CH₃) Molecular structures of various nitrobenzoic acid derivatives and their

All corresponding to polymorph I of the respective compound were used as received

Cl-iso-CH₃

-130

CH₃-subst-Cl

Cl-iso-OH

● OH-iso-CH₂

-125

4C3NBA

OH-subst-CH₂

compared to the original structure (the frame is covered in black)⁵.

CH₃-subst-OH

a)

CH₃-subst-OH

2C4NBA

OH-iso-CH₃

CH₃-iso-Cl

Cl-subst-OH

Cl-subst-CH₂

OH-subst-Cl

Cl-subst-OH

CH₃-iso-Cl

Cl-subst-CH₂

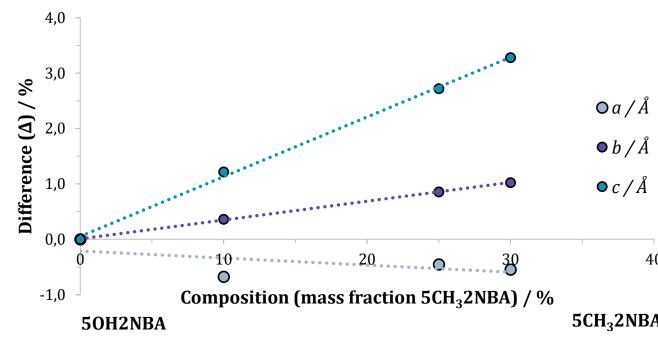
-150

-165

OH-iso-Cl

CH₃-iso-OH Cl-iso-OH

group, **red** – methyl group).


c)

Energetic aspects of nitrobenzoic acid solid solutions

Aims

- To perfrom crystallization experiments between binary systems of various substituted nitrobenzoic acid derivatives ant their isomers to experimentally determine the information about formation of solid solutions;
- To identify possible factors which could be used in prediction of the formation of solid solutions (SS) between chemically similar molecules.

Structural aspects of nitrobenzoic

Crystalline lattice parameters (a, b and c) changes depending on the content of $5CH_32NBA$ in $5CH_32NBA_{100-x}5OH2NBA_x$ solid solutions.

In the case of non-solvated solid solutions, it can be observed that the crystal lattice parameters, depending on the content of substituted nitrobenzoic acid derivative, form a monotonous function, this means that the **Vegard's Law** is fulfilled⁴.

Abstract

Crystallization experiments of mixtures of various substituted nitrobenzoic acid derivatives and their isomers, were used to determine the experimental information about that the solid solutions can form between those substances. Crystalline phases that were obtained during the work, were characterized by combination of use of X-ray powder diffraction (XRPD) and thermal analysis (DSC/TG), also using the nuclear magnetic resonance spectroscopy (1H-NMR), information about stoichiometric ratios, of mixtures of different nitrobenzoic acid derivatives and their isomers in crystallization products, were obtained².

LATVIJAS UNIVERSITĀTE

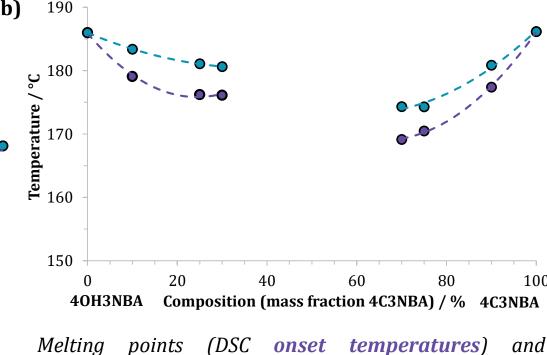
UNIVERSITY OF LATVIA

Molecular Crystals

Laboratory of

Furthermore, using quantum chemical calculations for information about structural and energetic aspects were carried out to identify possible factors, which could be used in prediction of solid solutions in binary systems of chemically similar molecules³.

Quantum chemical calculations

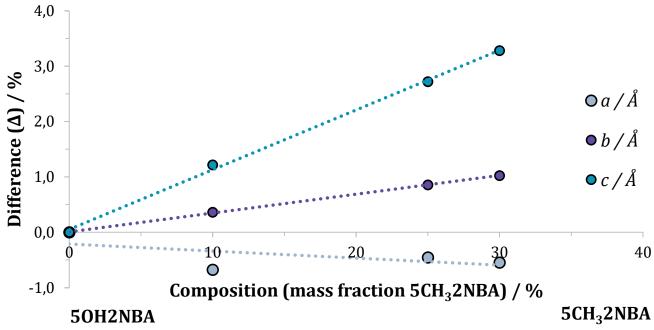

Information about crystal lattice energy changes for different nitrobenzoic acid derivatives and their isomers (calculated according to *VC-relax* and *SCF* solution)*

Structure	Replacement	ΔE / kJ·mol ⁻¹			
		20H4NBA	20H5NBA	40H3NBA	50H2NBA
Original	-	0,0	0,0	0,0	0,0
Isostructural	Cl-iso-OH	1,0	2,2	-4,0	26,5
	CH ₃ -iso-OH	1,7	6,4	-3,0	14,7
Substituted	OH-subst-Cl	1,0	3,5	-1,2	8,1
	OH-subst-CH ₃	1,2	7,3	-0,2	6,1
Structure	Replacement	ΔE / kJ·mol ⁻¹			
		2C4NBA	2C5NBA	4C3NBA	5C2NBA
Original	-	0,0	0,0	0,0	0,0
Isostructural	OH-iso-Cl	28,6	-6,7	-21,5	-16,0
	CH ₃ -iso-Cl	-0,4	-1,3	-1,5	-0,4
Substituted	Cl-subst-OH	1,7	-0,5	-0,9	-1,3
	Cl-subst-CH ₃	0,4	-0,6	-1,2	-1,3
Structure	Replacement	ΔE / kJ·mol ⁻¹			
		2CH ₃ 4NBA	2CH ₃ 5NBA	4CH ₃ 3NBA	5CH ₃ 2NBA
Original	-	0,0	0,0	0,0	0,0
Isostructural	Cl-iso-CH ₃	4,7	8,7	4,5	23,8
	OH -iso- CH_3	10,4	-4,4	-12,8	-25,2
Substituted	CH ₃ -subst-Cl	0,2	2,8	2,3	9,1
	CH ₃ -subst-OH	0,2	0,2	1,0	2,9
* AE (0 (colored in hold) it is likely that the two someoneds will					

- $\Delta E < 0$ (colored in **bold**), it is likely that the two compounds will crystallize separately and will form solid solutions with each other in the given combination⁶.

Identification of nitrobenzoic acid solid solutions

Solid solution formation can be confirmed by means of melting phase diagram. It precisely demonstrate that the various substituted nitrobenzoic acid derivatives and their isomers form solid solutions between each other, for example, when solid solution forms in the whole range of substance ratios (a) and at both sides - limited substance ratios (b) 7 .


maximum points (DSC peak temperatures) vs. mass fraction of a) 20H4NBA in 20H4NBA_{100-x} 2C4NBA_x and b) 4C3NBA in 4C3NBA_{100-x} 4OH3NBA_x solid solutions.

Graphically depicting the **melting** of the crystallization products (*onset temperature*) depending on the weight fraction of the substituted nitrobenzoic acid derivative, as well as including the maximum temperature (peak temperature) a two-component phase diagram is formed ($T_{melt.}$ – solidus and $T_{max.}$ – liquidus).

Conclusions

- The possibility of solid solution formation in a system which contains different substituted nitrobenzoic acid derivatives and their isomers was investigated using a simple molecular modeling procedure which consists of (I) replacement of a given amount of B molecules into the A structure by preparing a virtual solid solution as well furthermore comparison energy of these structures with the energy of the original structure (calculated for pure phases);
 - A prediction of different experimental phase behaviors observed in these systems was achieved. Computational studies can be used to predict the formation of solid solution in binary systems of various substituted nitrobenzoic acid derivatives and their isomers. The results show that the lattice and intermolecular interaction energy can be used to determine whether the respective solid solution will form, but do not allow prediction of specific maximum ratios of formed solid solutions;
- As this modelling approach was successful, research will proceed with molecules that are more complex (for example, active pharmaceutical ingredients) in order to understand possible factors, both geometric and energetic, and systematize the factors responsible for the formation of solid solutions.

acid solid solutions

Cl-iso-CH₂

OH-subst-Cl

5CH₃2NBA

OH-subst-CH₃

2C5NBA

Cl-subst-OH

Cl-subst-OH

Cl-subst-CH₃

240

230

220

210

200

190

180

-125

Energy / kJ·mol⁻¹

20H5NBA

-120

-10,0

30,0

20,0

5C2NBA -20,0

Energy / kJ·mol⁻¹

CH₃-iso-Cl

-120

2C4NBA Composition (mass fraction 2OH4NBA) / % 2OH4NBA

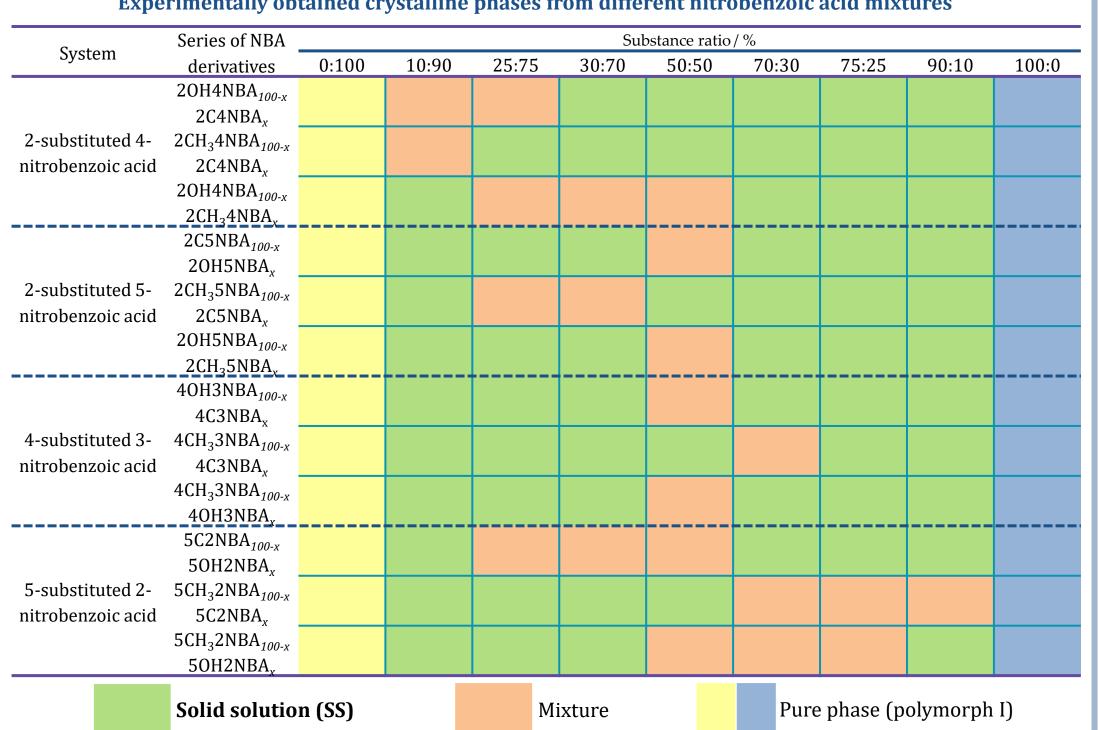
CH₃-subst-Cl

2CH₃5NBA

CH₃-subst-OH

50H2NBA

-180


Energy change (ΔE) depending on the crystal lattice energy of a) 2-substituted 4-nitrobenzoic, b) 2-substituted 5-nitrobenzoic acid, c) 4-substituted 3nitrobenzoic acid and d) 5-substituted 2-nitrobenzoic acid (colors are marked by substitution of group/atom (R): green - chlorine atom, orange - hydroxyl

OH-iso-CH₃

Crystallization results

The preparation of the solid solutions of various nitrobenzoic acid derivatives and their isomers was based on crystallization from solvent (in this case from ethanol), in different proportions (%), from 100-x to x, where $0 \le x \le x$ **100**.

Experimentally obtained crystalline phases from different nitrobenzoic acid mixtures

APPLIED RESEARCH **PROJECTS**

Acknowledgments

This work has been supported by the Latvian Council of Science, project "Crystal engineering of pharmaceutical multicomponent phases for more efficient crystalline phase design", project No. lzp-2018/1-0312

References

- 1. Bērziņš. A., Kons. A., Saršūns. K., Belyakov, S., Actiņš, A. *Crystal Growth & Des*ign, **2020**, *20(9)*, 5767-5784.
- 2. Lusi, M. Cryst. Growth Des., **2018**, 18 (6), 3704-3712.
- 3. Fonseca, J. de C., Tenorio Clavijo, J. C., Alvarez, N., Ellena, J., Ayala, A. P. Crystal Growth & Design, 2018, 18(6), 3441-3448.
- 4. Denton, A. R., Ashcroft, N. W. Phys. Rev. A., 1991, 43, 3161-3164.
- 5. Thomas, S. P., Spackman, M. A. Australian Journal of Chemistry, 2018, 71(4), 279-284.
- 6. Thomas, S. P., Spackman, P. R., Jayatilaka, D., Spackman, M. A. Journal of Chemical Theory and Computation, **2018**, *14(3)*, 1614-1623.
- 7. Romasanta, A. K. S., Braga, D., Duarte, M. T., Grepioni, F. *CrystEngComm.*, **2017**, *19*(4), 653-660.