EXPLORING CRYSTAL CHEMISTRY OF BINARY SILVER CHLORIDES

With Evolutionary Algorithms And Density Functional Theory

M. Uhliar^{1*}, K. Tokár^{1,2}, O. Kohulák³, M. Derzsi^{1,4}

¹ATRI Institute, MTF Slovak University of Technology in Bratislava, Slovakia ²Institute of Physics, Slovak Academy of Sciences, Slovakia ³ Department of Physics, Faculty of Science, University of Ostrava, Czech Republic ⁴Center of New Technologies, University of Warsaw, Poland uhliar.matej@gmail.com

SLOVAK UNIVERSITY OF Fechnology in Bratislava Faculty of Materials Science and Technology in Trnava

INTRODUCTION

- The only know silver chloride phase is AgCl with rock salt structure
- Various other stoichiometries are known among **transition metal chlorides**: i.e. MCl_x (x = 1 - 6), M_2Cl_5 , M_3Cl_8 .
- Rich phase diagram in **Ag-F** system: Ag_2F , AgF, AgF_2 , Ag_2F_5 , Ag_3F_8 , AgF_3
- **Dichlorides** and **trichlorides** commonly observed with **coinage** metals.
- So why other **Ag-Cl** phases are not observed?
- Our **previous theoretical study** of Ag/Cl enriched/deficient AgCl models suggests existence of other phases [*Uhliar, Bsc thesis 2018*].
- **Our goal** is to **explore Ag-Cl phase diagram from ab initio** with DFT and Evolutionary Algorithms.

METHODS

- Density Functional Theory (DFT) calculation were performed in program VASP [*Kresse et. al., Phys. Rev.* **59** (1999)] with following settings:
 - GGA **PBEsol** functional,
 - plane-wave cut-off 520 eV,
 - DFT-D3 for van der Waals correction,
 - on site **Coulomb correlation** term $U_{Ag}=5$ eV in combination with Hunt exchange $J_{Ag}=1$ eV.
- Open source **V4p** software for electronic Density of States data reading and visualization. [*http://www.p4vasp.at/*].
- EA calculations: **XtalOpt** program using 4-step DFT+vdW optimization [*Avery, et. al., Computer Physics Communications (2017)*].
- Visualization of crystal structures was done in VESTA software [*Momma et. al., J. Appl. Crystallogr., (2011)*].

MODELLING Ag-Cl PHASES IN Ag-F STRUCTURE TYPES

CRYSTAL STRUCTURES FROM EVOLUTIONARY ALGORITHMS

Common features:

- AgCl₂ stripes (2-step ladder in Ag₂Cl₅)
- Cl polyanions

Distinct features:

• Different connectivity of Ag with Cl polyanions

ELECTRON LOCALIZATION MAPS – ANALYSIS OF BONDS

GEOMETRY OF BONDS: POLYANIONS

NOVEMBER 2020 ONLINE

GEOMETRY OF BONDS: Ag-Cl

ELECTRONIC STRUCTURE: DENSITY OF STATES

Phase	Stoichiometry	Ground state
AgCl ₃	Ag ⁺ Cl ₃ ⁻	semiconductor
AgCl ₅	Ag ⁺ Cl ₃ ⁻ Cl ₂	semiconductor
AgCl ₄	Ag ²⁺ Cl ⁻ ₂ Cl ₂	AFM semiconductor
AgCl ₆	$Ag^{2+}CI_{2}(CI_{2})_{2}$	FM semiconductor
Ag ₃ Cl ₈	$Ag^{2+}Cl^{-}Cl_{3}^{-}$ (layer 1) $Ag^{1+}_{2}Cl^{-}Cl_{3}^{-}$ (layer 2)	AFM metal
Ag_2Cl_5	$Ag^{1.5+}_{2}(Cl^{-})_{2}Cl_{3}^{-}$	metal

CONVEX HULL

• All phases are metastable relative to AgCl

CONCLUSIONS

- Ag-Cl phases were modelled in Ag-F types of crystal structures at low and high pressures.
- **Evolutionary algorithms** were used to calculate crystal structures of: $AgCl_3$, $AgCl_4$, $AgCl_5$, $AgCl_6$, Ag_2Cl_5 , Ag_3Cl_8 .
- Our calculations predict **formation of chlorine polyanions** in all phases with higher chlorine content (>0.7).
- Ag-Cl containing Cl polyanions are energetically **preferred over the Ag-F** type structures.
- The highest oxidation state of silver found in the predicted phases is Ag^{2+} .
- The phases containing **Ag**⁺ cations are predicted as **semiconductors**.
- The phases containing higher oxidation states are predicted to be **magnetic metals** or **semiconductors**.
- All predicted structures were computed to be **metastable** relative to the known AgCl.

ACKNOWLEDGEMENTS

- The European Regional Development Fund, Research and Innovation Operational Programme, for project No. ITMS2014+: 313011W085.
- Scientific Grant Agency of the Slovak Republic, grant No. VG 1/0223/19.
- The Slovak Research and Development Agency, grant No. APVV-18-0168.
- Aurel supercomputing infrastructure in CC of Slovak Academy of Sciences acquired in projects ITMS 26230120002 and 26210120002 funded by ERDF.

Thank you for your attention!