The 2nd International Online Conference on Crystals, 10-20 NOV 2020, ONLINE 🛛 🌝 crystals

#### STRUCTURAL CHARACTERIZATION OF LIGHT **METAL BOROHYDRIDES** BY DISPERSION-CORRECTED DENSITY FUNCTIONAL THEORY MODELLING

#### Mariana Derzsi,<sup>1,3</sup> A. Starobrat,<sup>2,3</sup> T. Jaroń,<sup>3</sup> P. Malinowski<sup>3</sup> and W. Grochala<sup>3</sup>

<sup>1</sup>ATRI Institute Materal-Tech. Faculty, Slovak University of Technology in Bratislava <sup>2</sup>College of Inter-Faculty Individual Studies in Math. and Natural Sciences, University of Warsaw <sup>3</sup>Center of New Technologies, University of Warsaw

mariana.derzsi@stuba.sk











#### METAL BOROHYDRIDES

#### Importance

• H-rich systems with: potential hydrogen storage material

#### Challenges

- Thermodynamic stability:
  - $Be(BH_4)_2$  with 20.7 wt.%  $\leftarrow$  immensely toxic
  - $Al(BH_4)_3$  18.4 wt.%  $\leftarrow$  explosive
  - $Mg(BH_4)_2$  14.8 wt.%  $\leftarrow$  overly-stable

#### Solutions

- Synthesis of multi-cation borohydrides.
- Structural systematics challenging: low crystallinity, poorly scattering atoms, frequent substitutional disorder.
- <u>Computational modelling</u> as a great aid to structure characterization.

de crystals

### Mixed metal borohydride $LiSc(BH_4)_4$

- The first *tetragonal* **α** polymorph (*P*-42c, Z=2) was reported in 2008.
- In 2018, *tetragonal*  $\beta$  phase was observed (*I*4/m, Z=8).
- Recently, *cubic* **γ** polymorph (*P*-43m, Z=1) proposed.



MDPL



ordered  $\alpha$  model (P222<sub>1</sub>)



**Predicted ground state (**/-4)



not match the diffraction pattern of **α** 

Kim's models do

MDPI

•

Synchrotron measurement

Hagemann et al., J. Phys. Chem. A (2008)

Kim et al., J. Phys. Chem. C (2009)

 $\beta$  - LiSc(BH<sub>4</sub>)<sub>4</sub>



Starobrat, T. Jaroń, W. Grochala, Dalton Trans. (2018)

 $\begin{array}{lll} \beta \mbox{-} \mbox{LiSc(BH}_4)_4 & \mbox{NH}_4 \mbox{Sc(BH}_4)_4 \\ a = 14.3 \mbox{ $\AA$} & a = 15.7 \mbox{ $\AA$} \\ c = 7.4 \mbox{ $\AA$} & c = 7.9 \mbox{ $\AA$} \\ \beta = 90.5^{\circ} & \mbox{$$\Lambda$} & a = 89.5^{\circ} \\ \beta = 90.5^{\circ} & \mbox{$$\Lambda$} & p = 90.5^{\circ} \\ \gamma & = 81.4^{\circ} \\ (\mbox{in $$\beta$-LiSc(BH}_4)_4 \\ representation) \end{array}$ 

The 2nd International Online Conference on Crystals, 10-20 NOV 2020, ONLINE

### $\beta$ - LiSc(BH<sub>4</sub>)<sub>4</sub> – DFT results



1. Ordered  $\boldsymbol{\beta}$  models



2. NH<sub>4</sub>Sc(BH<sub>4</sub>)<sub>4</sub> type models

ig crystals

- Many ordered models were tested.

MDPI

 Our approach to describe β phase with ordered models has failed.

### Common features of $\alpha$ and $\gamma$ LiSc(BH<sub>4</sub>)<sub>4</sub>



• **α** and **γ** phase share simple cubic **Sc sublattice** 

- Differ only in occupation of interstitial positions by Li
- Zr(BH<sub>4</sub>)<sub>4</sub> prototype structure contains tetrahedral voids ready to host Li in:
  - Centre (1/2, 1/2, 1/2)
  - Face (1/2, 1/2,0)
  - Edge (1/2, 1/2, 1/2)

The 2nd International Online Conference on Crystals, 10-20 NOV 2020, ONLINE 🤙 crystals

## DFT Modelling LiSc( $BH_4$ )<sub>4</sub> in Zr( $BH_4$ )<sub>4</sub> type lattice



# DFT Modelling LiSc( $BH_4$ )<sub>4</sub> in Zr( $BH_4$ )<sub>4</sub> type lattice



Kim et al., J. Phys. Chem. C (2009) Kim's best model



-680 meV

 $\Delta E = -701 \text{ meV}$  a = 5.851 Å, c = 11.827 Å  $d(H...H)_{inter} = 2.752 \text{ Å}$ **DFT-D3 result** 

a = 5.760 Å, c = 11.985 Å d(H...H)<sub>inter</sub> = 2.800 Å **DFT-D3 result**   In the lowest-E models LiB<sub>4</sub> found in tetrahedral geometry

- The two models differ in Sc sublattice
- The model with simple cubic Sc sublattice with face-centred Li was found to be the ground state

## DFT Modelling LiSc( $BH_4$ )<sub>4</sub> in Zr( $BH_4$ )<sub>4</sub> type lattice

Li on face P-42c



Rietveld refinement of  $\alpha$ -phase with ordered *P*-42c model



ordered<br/>modeldisordered<br/>modelSPGRP-42cP-42cwRp [%]1.171.44

28.63

6.0670(5)

12.0147(10)

cRp [%]

a [Å]

c [Å]

Comparison of XRD parameters:

MDPI

ΔE = -701 meV

a = 5.851 Å, c = 11.827 Å d(H...H)<sub>inter</sub> = 2.752 Å **DFT-D3 result**  32.21

6.0710(8)

12.0233(16)

## DFT Modelling LiSc( $BH_4$ )<sub>4</sub> in Zr( $BH_4$ )<sub>4</sub> type lattice

Li on face



#### Importance of dispersion-corrected DFT (D3)

Simulated XRD patterns of  $\alpha$ 



#### basic DFT method fails

 Qualitative agreement reached only with dispersion-corrected DFT (DFT-D3)

MDPI

ΔE = -**701** meV

a = 5.851 Å, c = 11.827 Å d(H...H)<sub>inter</sub> = 2.752 Å **DFT-D3 result** 

👍 crystals The 2nd International Online Conference on Crystals, 10-20 NOV 2020, ONLINE

## Modelling LiSc( $BH_4$ )<sub>4</sub> – lattice dynamics approach

Phonon dispersion curves (DFT) • 16 14 Li(½,½,½) 12 *P*-43m 10 **E (THz)** 8 4 ۲ unstable 2 modes 0 -2 -4 -Μ M Brillouin zone The lowest-E

Searched for lower-energy solutions by distorting the structure along the atomic displacements of ALL unstable modes.

- Four optical modes are being instable:
  - Li displacement,
  - BH<sub>4</sub> reorientation and translation.
- Computed close to 100 structures.

Kim's 'ground state'(*I*-4) Kim et al., J. Phys. Chem. C (2009)

The 2nd International Online Conference on Crystals, 10-20 NOV 2020, ONLINE

 $\beta$  phase = LiSc(BH<sub>4</sub>)<sub>4-x</sub>Cl<sub>x</sub>, x≈0.7



| $LiSc(BH_4)_{4-x}Cl_x$ | x=0  | x≈0.7 |
|------------------------|------|-------|
| wRp [%]                | 0.98 | 0.97  |
| cRp [%]                | 8.78 | 8.66  |
|                        |      |       |

MDPI

ig crystals



- We have been able to **resolve the old standing problem** of the structure and stability of the  $\alpha$  polymorph.
- $\alpha$  is best described by the ordered *P*-42c model.
- $\alpha$  is confirmed to be the ground state (only) polymorph of LiSc(BH<sub>4</sub>)<sub>4</sub>.
- $\gamma$  can be interpreted as  $\alpha$  with substantial Li disorder.
- $\beta$  redetermined as **mixed anion** BH<sub>4</sub>-Cl **phase**: LiSc(BH<sub>4</sub>)<sub>4-x</sub>Cl<sub>x</sub>, where x≈0.7.



 Computational resources: the Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw under grant no. ADVANCE++ (GA76-19).

de crystals

- The European Regional Development Fund, Research and Innovation Operational Programme, project No. ITMS2014+: 313011W085.
- Polish National Science Centre under grant HYDRA no. 2014/15/B/ST5/05012.
- Biopolymers Laboratory, Faculty of Physics, University of Warsaw, for the access to Agilent Supernova X-ray single-crystal diffractometer, co-financed by the European Union within the ERDF Project POIG.02.01.00-14-122/09.



#### THANK YOU FOR YOUR ATTANTION