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Abstract: 

Topological defects (TDs) constitute topologically protected frustrated regions in a
host field of an ordered manifold. They are ubiquitous in nature and appear at all
scales, including the realms of particle physics, condensed matter, cosmology… We
demonstrate that a simple plane parallel cell that confines a nematic liquid crystal
(LC) could host diverse complex and multistable configurations of TDs, which we
stabilized using the AFM scribing method. These competitive states could be
reversibly and robustly reconfigured by appropriate external electric fields.
Furthermore, we show that complex lattices of line defects, which are otherwise
unstable or stable in a narrow interval of temperatures, could be stabilized
efficiently by doping LCs with appropriate nanoparticles. We demonstrate that
such TD configurations have potential for diverse applications, particularly in nano-
and biotechnology: e.g., for nanotechnology-based devices based on
reconfigurable conducting nanowires, tunable photonic devices, sensitive sensors…
Furthermore, our study of TDs might provide some insight into still unresolved
problems of fundamental physics. Namely, LCs could exhibit so-called “chargeless”
twist disclinations, which commonly decay into a defectless state. Twist TDs could
simultaneously act as defects and antidefects [3], and such neighboring pairs could
be mutually annihilated. These configurations bear some resemblance to intriguing
Majorana particles.
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I. INTRODUCTION
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Typical Skyrmion
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Skyrmions : 
as p, n in a pion-field
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A unified field theory of 
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Applications
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Adequate testbed – Liquid Crstals
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II. Topological Defects in Liquid Crystals
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Palffy, Phys.Today 60, 54 (2007).

Continuous symmetry breaking phase transition:

Order parameter : amplitude&phase   
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Order parameter space
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Topological charge
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Continuous symmetry breaking
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Origin of TDs
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Stabilisation : confinement
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Gaussian curvature  

Stabilisation : curvature



Gauss – Bonnet & Poincaré-Hopff theorem
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Effective Topological Charge 
Cancelation 

(ETCC) mechanism 

Sci. Rep. 6, 27117 (2016).

Stabilisation : curvature
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Intrinsic and extrinsic curvature
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Intrinsic curvature term
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Sci. Rep. 9, 19742 (2019).

Extrinsic term dominates close to a continuous phase transition!



Without extrinsic term :



With extrinsic term :



𝒆𝒙𝒕𝒓𝒊𝒏𝒔𝒊𝒄
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Stabilisation of “chargeless”  TDs
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Stabilisation with nanoparticles
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Chiral LCs : Blue Phases



Twist grain boundary phases
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III. Conclusions

• Stabilisation of defects: robust manipulations among 
different stable configurations of defects

• Potential applications: rewirable conductive wires, 
information storage, photonics, sensors…

• Fundamental science: fields as fundamental entities


