Electronic, Magnetic, and Optical Properties of Double Perovskites Pb₂XOsO₆ (X=Co, Ni)

Bishnu P. Belbase^{1,2}, Shalika R. Bhandari^{1,2,3}, Madhav P. Ghimire^{1,2,3}

 ¹Central Department of Physics, Tribhuvan University, Kirtipur 44613, Kathmandu, Nepal
 ²Condensed Matter Physics Research Center, Butwal, Rupandehi, Nepal
 ³Leibniz Institute for Solid State and Materials Research Dresden, Helmholtz str. 20, 01069 Dresden, Germany

Outline

- Introduction
- Methods and Computational Details
- Crystal Structure
- Results and Discussion
- Conclusions

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction

Materials Type

- Metals
- Half-metals
- Semiconductors
- Insulators

Double Perovskites (DPs)

- Most common DPs are A₂BB'X₆
- DPs covers all types of materials
- Shows remarkable properties like structural stability, superconductivity, half-metallicity etc

Fig: Classification of materials according to their energy gap [I. Galanakis et al., arXiv preprint cond-mat/0510276 (2005)]

Fig: Ideal DPs structure [K. Momma et al., J. Appl. Crystallogr. 44, 1272 (2011)]

Introduction

Applications

- Spintronics devices
- Photovoltaic application
- Laser light and light-emitting diode
- Microelectronics and telecommunication

Osmium based DPs

- $Sr_2CrOsO_6 \rightarrow Half$ metallic antiferromagnet ¹
- $\bullet~Ba_2NiOsO_6 \rightarrow Dirac-Mott$ insulating ferromagnet 2
- Ca₂CrOsO₆ \rightarrow Ferrimagnetic insulator ³
- SrLaFeOsO₆ \rightarrow Metallic antiferromagnet ⁴

¹K. W. Lee et al., Phys. Rev. B 77, 115101 (2008)

²H. L. Feng et al., Phys. Rev. B 94, 235158 (2016)

³S. R. Bhandari *et al., RSC Adv.* **10**, 16179 (2020)

Methods and Computational Details

Theoretical approach

- Performed density functional calculation to explore electronic and magnetic properties
- Used GGA functional
- GGA+U functional considered to account strong correlation effect of Co-3d, Ni-3d and Os-5d
- U-value for $Pb_2CoOsO_6 \rightarrow Co=4 \text{ eV}$ and Os=2 eV
- U-value for Pb₂NiOsO₆ → Ni=5 eV and Os=2 eV

Computational details

- Full potential local orbital (FPLO) code is used for calculation
- K-mesh used for band structure and density of state \rightarrow 12 \times 12 \times 10
- *K*-mesh used for optical properties \rightarrow 20 \times 20 \times 20
- Convergence criteria: Energy $\to 10^{-8}$ Hartree and charge convergence $\to 10^{-6}$ electronic charge

< 日 > < 同 > < 回 > < 回 > < □ > <

Crystal Structure

 Pb_2CoOsO_6

Crystal Information:

- Space group- 14 (*P121/c1* → monoclinic)
- Lattice parameters:
 a = 5.6365 Å; b = 5.5836 Å;
 c = 7.82833 Å
- Angles:
 - β = 89.815°; α = γ =90°
- By replacing Co by Ni from Pb₂CoOsO₆, Pb₂NiOsO₆ is formed.

Fig: Crystal structure of Pb_2XOsO_6 (X= Co, Ni). Here green octahedra are due to XO_6 and blue octahedra are due to OsO_6 .

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ground State and Magnetic Moment

- Performed energy calculation for different magnetic configurations: one ferromagnetic state (FM-^+++) two antiferromagnetic states (AF1-^+++, AF2-^++++), two ferrimagnetic states (FI1-^++++, FI2-^+++++), and non-magnetic state.
- Pb_2CoOsO_6 has antiferromagnetic (AF2- $\uparrow\downarrow\downarrow\uparrow\uparrow$) ground state.
- Pb_2NiOsO_6 has ferrimagnetic (FI1- $\uparrow\uparrow\downarrow\downarrow\downarrow$) ground state.

Table: Magnetic moment of	Table: Magnetic moment of
Pb ₂ CoOsO ₆	Pb ₂ NiOsO ₆

Atoms	GGA (μ_B)	$GGA+U(\mu_B)$	Atoms	GGA (μ_B)	$GGA+U(\mu_B)$
Со	2.68	3.00	Ni	1.47	1.96
Os	0.84	1.63	Os	1.32	1.69
Total	0.00	0.00	Total	0.01	0.00

イロト イポト イヨト イヨト

Density of State

- Pb₂CoOsO₆ is metal and Pb₂NiOsO₆ is half metal.
- No contribution of Co and Ni around Fermi level.
- Strong hybridization between Os-5d and O-2pnear the Fermi level.

Fig: Total density of state of (a) Pb₂CoOsO₆ (b) Pb₂NiOsO₆ within GGA+U.

Partial density of State

Fig: Partial density of state of Pb₂CoOsO₆ within GGA+U.

Fig: Partial density of state of Pb₂NiOsO₆ within GGA+U.

Band Structures

• Metallic nature in Pb₂CoOsO₆ and half-metallic nature in Pb₂NiOsO₆.

Optical Properties

Pb₂CoOsO₆

- Optically active in the energy range → 0 - 6.4 eV
- Significant intraband transition

Pb₂NiOsO₆

 Optically active in the energy range → 1.4 eV - 6.8 eV.

Conclusions

- Pb₂CoOsO₆ is antiferromagnetic metal whereas Pb₂NiOsO₆ is ferrimagnetic half-metal.
- With electron doping in Pb₂CoOsO₆, We found electronic and magnetic phase transition.
- We observed high intraband contribution in Pb₂CoOsO₆ as compare to Pb₂NiOsO₆
- Pb₂CoOsO₆ is optically active in infrared, visible, and lower energy range of the ultraviolet region.
- Pb₂NiOsO₆ is found to be more active in the visible region and lower energy range of the ultraviolet region.

< 日 > < 同 > < 回 > < 回 > < □ > <

Acknowledgments

- Condensed Matter Physics Research Center, Butwal, Rupandehi, Nepal
- Sainamaina Municipality, Nepal
- Nepal Academy of Science and Technology (NAST), Nepal
- IFW Dresden, Germany

