
Synthesis and antibacterial, antimycobacterial and antifungal activities of Fe(II), Fe(III), Cu(II), Zn(II) and Ni(II) complexes of aliphatic hydroxamic acids

Ibrahima Sory Sow¹, Michel Gelbcke¹, Franck Meyer¹, Dong Yang¹, Koen Robeyns², Véronique Fontaine¹ and François Dufrasne¹ Microbiology, Bio-Organic and Macromolecular Chemistry, Université Libre de Bruxelles, Belgique; ² Institute of Condensed Matter and Nanosciences, Molecular Structural Analysis, Université catholique de Louvain, Belgique

1. Introduction: Hydroxamic acids show interesting biological properties described in the literature [1], particularly against bacteria, tumoral cells, fungi [2,3,4] and mycobacteria [5,6]. In the present project we aim at more deeply and systematically exploring the biological properties of Fe(II), Fe(III), Cu(II), Zn(II) and Ni(II) complexes of aliphatic hydroxamic acids with variable chain lengths [7]. We investigate the effect of lipophilicity on the biological activity. The synthesis of Fe(II), Fe(III), Cu(II), Ni(II) complexes with C_2 , C_6 , C_8 , C_{10} , C_{12} and C_{17} hydroxamic acids and their effects on bacteria, mycobacteria and yeasts are described.

3. Results. Table 2: Minimum inhibitory concentration (µM) values biological assays against: Gram-positive/-negative bacteria, mycobacteria and yeasts of hydroxamic acids and their complexes (1–42) (see Table 1).

N°	Code	Gra	m- + bacteria	Gram bacteria			Mycobacteria	Yeasts					Gram- + bacteria			Gram bacteria			Mycobacteria	Yeasts			
		S.a MSSA	S.a MRSA	C.g	E.c	P.a	К.р	M.s	C.a	C.t	N°		Code	S.a MSSA	S.a MRSA	C.g	E.c	P.a	К.р	M.s	C.a	C.t	
1	HA2	>500	>500	>500	>500	>500	>500	>500	>500	>500	26	А	\10Cu2	>500	>500	>500	>500	>500	>500	>500	>500	>500	
2	A2Fe2	>500	>500	>500	>500	>500	>500	>500	>500	>500	27	А	\10Zn2	>500	>500	>500	78.125	>500	>500	>500	125	>500	
3	A2FeCl	>500	>500	>500	>500	>500	>500	>500	>500	>500	28	Д	A10Ni2	>500	>500	>500	>500	>500	>500	>500	250	>500	
4	A2Fe3	>500	>500	>500	>500	>500	>500	>500	>500	>500	29		HA12	62.5	125	62.5	62,5	>500	>500	62.5	15.625	62.5	
5	A2Cu2	>500	>500	>500	>500	>500	>500	>500	>500	>500	30	А	\12Fe2	>500	>500	>500	>500	>500	>500	125	>500	125	
6	A2Zn2	>500	>500	>500	>500	>500	>500	>500	>500	>500	31	Α	12FeCl	>500	>500	>500	>500	>500	>500	125	>500	250	
7	A1Ni2	>500	>500	>500	>500	>500	>500	>500	>500	>500	32	А	\12Fe3	>500	>500	>500	156.25	>500	>500	31.25	>500	125	9 5
8	HA6	>500	>500	>500	>500	>500	>500	>500	>500	>500	33	А	\12Cu2	>500	>500	>500	>500	>500	>500	>500	15.625	>500	Figure 1: Crystal structure
9	A6Fe2	>500	>500	>500	>500	>500	>500	>500	>500	>500	34	А	\12Zn2	>500	>500	>500	156.25	>500	>500	>500	15.625	>500	obtained by X-ray diffraction
10	A6FeCl	156.25	>500	>500	312.5	>500	>500	>500	>500	>500	35	Д	A12Ni2	>500	>500	>500	>500	>500	>500	>500	31.25	>500	of A8Fe3 (18).
11	A6Fe3	78.125	>500	>500	>500	>500	>500	>500	>500	>500	36		HA17	>500	>500	>500	>500	>500	>500	>500	>500	>500	
12	A6Cu2	>500	>500	>500	>500	>500	>500	>500	>500	>500	37	А	\17Fe2	>500	>500	>500	312,5	>500	>500	>500	>500	>500	
13	A6Zn2	>500	>500	>500	78.125	>500	>500	>500	>500	>500	38	Α	17FeCl	>500	>500	>500	>500	>500	>500	>500	>500	>500	
14	A6Ni2	>500	>500	>500	>500	>500	>500	>500	>500	>500	39	А	\17Fe3	>500	>500	>500	>500	>500	>500	>500	>500	>500	S.a MSSA: methicillin-sensitive
15	HA8	>500	>500	>500	312.5	>500	>500	>500	>500	>500	40	А	\17Cu2	>500	>500	>500	>500	>500	>500	>500	>500	>500	Staphylococcus aureus,
16	A8Fe2	312.5	>500	>500	156.25	>500	>500	>500	>500	>500	41	А	\17Zn2	>500	>500	>500	>500	>500	>500	>500	>500	>500	S.a MRSA: methicillin-resistant
17	A8FeCl	78.125	>500	250	156.25	>500	>500	>500	>500	>500	42	А	A17Ni2	>500	>500	>500	>500	>500	>500	>500	>500	>500	Staphylococcus aureus,
18	A8Fe3	78.125	>500	250	156.25	>500	>500	>500	>500	>500	43		Fe2	>500	>500	>500	>500	>500	>500	>500	>500	>500	C.g: Corynebacterium glutamicum, E.c: Escherichia coli,
19	A8Cu2	>500	>500	>500	>500	>500	>500	>500	>500	>500	44	ı	Fe3	>500	>500	>500	>500	>500	>500	>500	>500	>500	P.a: Pseudomonas aeruginosa,
20	A8Zn2	>500	>500	>500	78.125	>500	>500	>500	250	>500	45		Cu2	312.5	>500	500	>500	>500	>500	>500	>500		K.p: Klebsiella pneumoniae,
21	A8Ni2	>500	>500	>500	>500	>500	>500	>500	>500	>500	46		Zn2	>500	>500	250	<78.125	>500	>500	>500	>500	>500	M.s: Mycobacterium smegmatis,
22	HA10	312.5	>500	500	312.5	>500	>500	>500	31.25	>500	47		Ni2	>500	>500	>500	>500	>500	>500	>500	>500	>500	C.a: Candida albicans
23	A10Fe2	125	>500	125	>500	>500	>500	>500	>500	>500	48		Vanc	<1.048	1.725	0.215	<1.048	>3.45	>3.45	0.431	>3.45	0.215	C.t: Candida tropicalis, Van: Vancomycin (48),
24	A10FeCl	78.125	>500	250	312.5	>500	>500	>500	>500	>500	49		Cetr		<0.0928	<0.00219		0.3715	0.0928	0.372	0.0928		Cetr: Cetrimide (49)
25	A10Fe3	78.125	>500	125	<78.125	>500	>500	>500	>500	>500	50		Rifa			0.00918			>6.079	<0.189			Rifa: Rifampicin (50).
						- 2 -																	

4. Conclusion and perspective: The results of the *in vitro* test carried out support the hypothesis that the length of the R₁ group chain and the type of coordination metal have an effect on antimicrobial activity. The toxicity of compounds with significant antibacterial and antifungal activity will be investigated on cervical cancer cells and the cell penetration of the most promising compounds will be determined.

[1] Alam et al. Cur. Org. Chem. 2019, [2] Karger, Horst Kehl N.Y 1982.; [3] Maehr et al. Pure Appl. Chem. 1971; [4] Hase et al. Chem. Pharm. Bull. 1971; [5] Urbanski, Nature, 1950; [6] Urbanski et al. Nature, 1952; [7] O'Brien et al. J. of Inorg. Biochem. 2000; [8] Brown et al. Inorg. Chem. 1983; [9] Aliyu et al. Asian J. of Chem. 2011; [10] Bayer et al. from Patentschrift, 1967; [11] Zhu et al. N.P.C, 2011; [12] Darren et al. J. of Inorg. Biochem., 2011; [13] Reddy et al. Tetrahedron letters, 2000; [14] Cerniauskaite et al. Eur. J. Org. Chem. 2011; [15] Brown et al. M.R. In Chemi. 1988; [16] Devlin et al. J. Chem. Soc. 1975.

0°C and room temperature (r.t).

