

6th International Electronic Conference on Medicinal Chemistry

1-30 November 2020 sciforum.net/conference/ECMC2020

Identification of N3-Substituted oxazolidinones as subtype selective 5-HT2b ligands

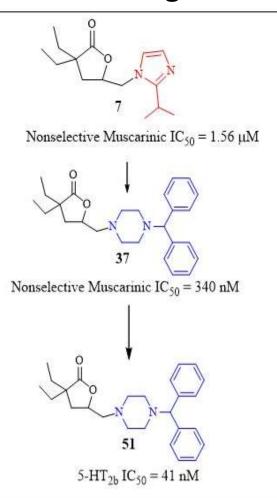
Richie R. Bhandare^{1*}, Benjamin Blass², John Gordon², Daniel J. Canney^{2*} and Afzal Basha Shaikh³

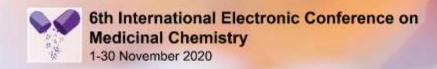
1. Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Ajman, UAE.

2. Moulder Center for Drug Discovery Research, Department of Pharmaceutical Sciences

Temple University, School of Pharmacy, 3307 North Broad Street, Philadelphia, PA 19140.

3. Vignan Pharmacy College, Vadlamudi-522213, Andhra Pradesh, India.


• Corresponding author: <u>r.bhandareh@ajman.ac.ae</u>; canney@temple.edu

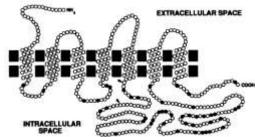

sponsored by

pharmaceuticals

Identification of N3-Substituted oxazolidinones as subtype selective 5-HT2b ligands

Graphical Abstract

sponsored: MDF


pharmaceuticals

Abstract: The purpose of this study was to evaluate the binding of N3-substituted oxazolidinone-based compounds against a panel of receptor subtypes. Literature reports suggests that the oxazolidinone nucleus is a suitable fragment for binding to GPCR receptors including adenosine, muscarinic and serotonin receptors. Previous studies involving oxazolidinone-based and Chromone-based compounds previously synthesized in our laboratory exhibited low to moderate affinity for muscarinic receptors. Based on these reports, we decided to screen our oxazolidinone and chromone based compounds in GPCR receptor panels using a receptor radioligand binding assay. Test compounds were evaluated for affinity in the binding assays and those ligands exhibiting % specific inhibition >50% were selected for further evaluation (IC_{50} and ultimately subtype selectivity). Preliminary binding evaluation of oxazolidinone-based compounds indicate that the oxazolidinone nucleus represents a novel chemical entity in serotonergic (5-HT) ligands. The novel ligands evaluated for 5-HT subtype selectivity were found to be selective towards the serotonin subtype 2b. A cyclopentyl substituted oxazolidinone-based ligand containing a diphenylmethylpiperazine fragment (Compound 51) was identified as a 5-HT2b ligand with an IC_{50} of 41 nM. The synthesis and evaluation of our novel oxazolidinone-based 5-HT ligands will be presented along with a discussion of the structure-activity relationship data for the series. The compounds reported herein represent an interesting series of novel 5-HT ligands that warrant further study. The data provided herein will assist in the design of future 5-HT2b ligands possessing improved affinity and selectivity. Such compounds will be useful research tools with which to better understand the physiological role of the 5-HT2b receptor subtype.

Keywords: GPCR, Oxazolidinones, Chromones, 5-HT2b

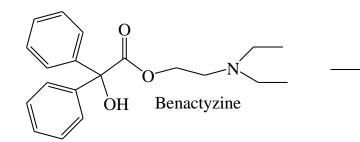
Introduction <u>G-protein coupled receptors (GPCRs)</u>

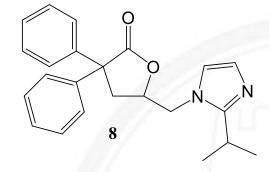
- The G-protein coupled receptor (GPCR) superfamily is one of the largest families of proteins found in nature.
- Designing ligands for GPCRs for therapeutic purposes has been fruitful with more than 50 % of drugs in the market.
- The GPCR superfamily is characterized by the presence of seven transmembrane helical domains (TM I VII) which are connected by three intracellular and three extracellular loops.
- The human GPCRs can be classified into five distinct families: rhodopsin, glutamate receptor, adhesion receptor, taste2 receptor and secretin receptor.

pharmaceuticals

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

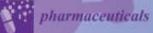
sponsored: MDF


Distribution and functional role of muscarinic receptors

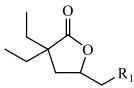

Peripheral	Central
Bladder: M ₂ , M ₃	Brain:
Salivary glands: M ₁ , M ₃	M_1 : neocortex, hippocampus
Gastrointestinal tract: M ₂ , M ₃	and neostriatum
Heart: M_2 , M_3 , M_1	M ₂ : throughout the brain
	M ₃ : cortex, hippocampus
	M_4 : neostriatum,
	hippocampus and
	cortex
	M ₅ : striatum, substantia
	nigra
t	

Disease/ disorder	Target receptor
Alzheimer's disease and cognitive	M_1, M_2, M_5
impairments	1700
Schizophrenia	M_2, M_4
Pain	M_2
COPD/bronchial asthma	M ₃
Parkinson's disease	M_4, M_5
Impairment in salivary secretions	M ₃
Gastrointestinal (GI) and Urinary	M ₃
bladder disorder	
Peptic ulcer	M_1, M_3, M_5
Type 2 diabetes	M ₃ 5

Lactone based muscarinic ligands designed by Kaiser



Antimuscarinic activity						
Vas deferens rabbit <i>K</i> i	Vas deferens rabbit <i>K</i> i atria, guinea pig <i>K</i> i ileum, guinea pig <i>K</i> i					
(nM) M ₁	(nM) M ₃					
133	115	8				


6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

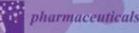
Structure of representative lactone - based muscarinic ligands

reported by our lab

	% Initial inhibtion at 10 µM ^{a,b}				
Compound #	R ₁	M_1 [³ H]-pirenzepine (<i>K</i> i = 2.2 nM)	$M_2 [^{3}H]$ -AF-DX 384 (Ki = 6.4 nM)	$M_3 [^{3}H]$ -NMS (<i>K</i> i = 1.4 nM)	
1	N	63.2	83.8	53.2	
2	NO	17	58.7	38.6	
3	N N	17.8	64.4	19.1	
4	N N N	60.36	35.36	0.1	
5	N N N	53.32	32.56	15.59	
6	N N	66.86	22.31	13.96	
	CH(CH ₃) ₂	01 / -			
7		81.65	38.62	17.89	

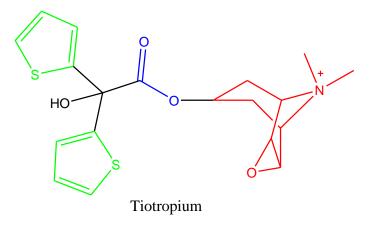
جامعة عجمان AJMAN UNIVERSITY

In-vivo functional analysis revealed these lactones to be M_1 agonist


Challenges in developing subtype selective ligands

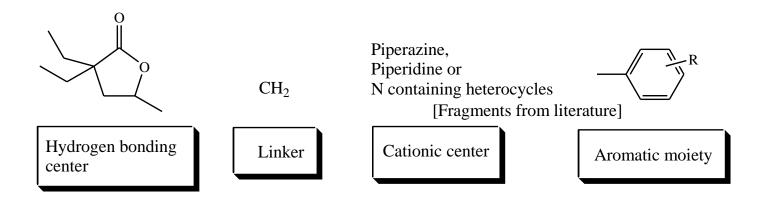
- No truly selective ligands on which to base design
- Homology of subtypes
- Crystal structure based on rhodopsin until recent availability of M_2 and M_3 crystal structure

But.....


- SAR data from available ligands may be useful in design
- Pharmacophore/homology model
- Use of crystal structure for the design of new ligands

Pharmacophoric requirements

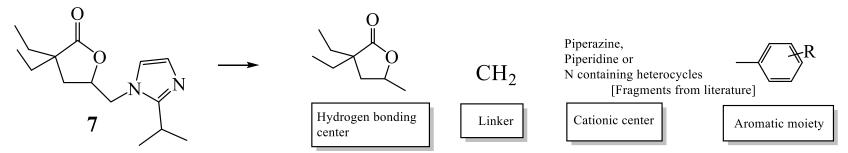
- Suitable hydrogen bonding center
- Quaternary ammonium group or its equivalent
- Presence of suitably located lipophilic/alkyl groups



pharmaceuticals

sponsored: MDF

Proposed ligand scaffold

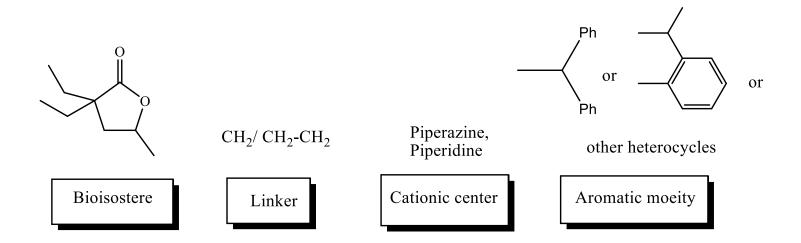

Hypothesis:

appropriately positioned functional groups (eg. substituted and unsubstituted aromatic rings and N-containing heterocycles) exhibiting a wide range of physicochemical properties on lead molecules may provide improved affinity towards muscarinic receptor

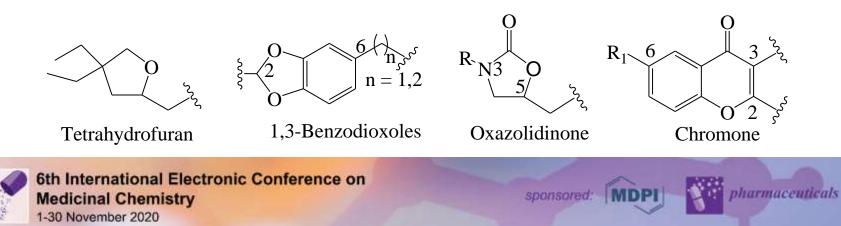
An important distinction between the newly designed ligands and the lead lactones is the presence of substituted or unsubstituted aromatic systems that provide opportunities for interactions with auxiliary binding sites of mAChR's

Specific aims

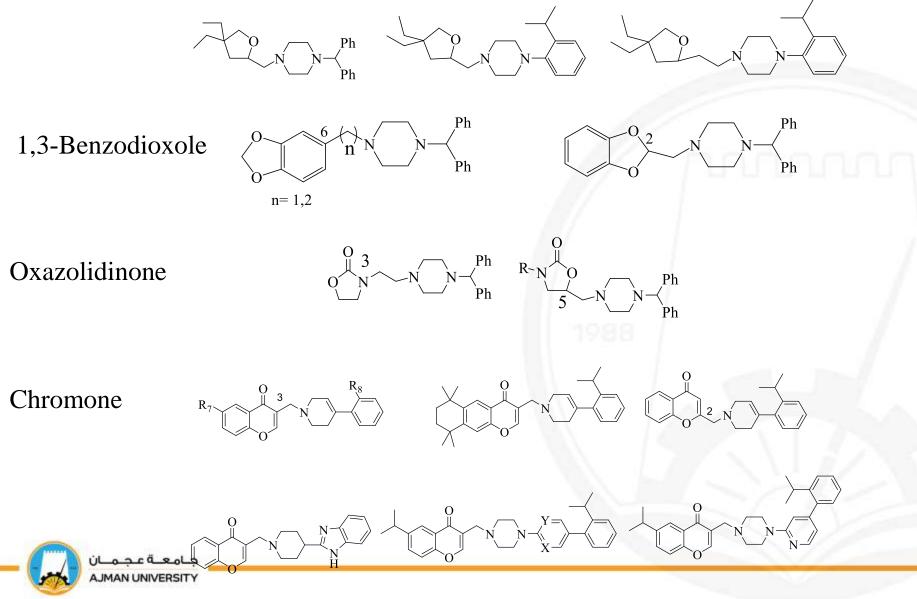
1:Modification of lead lactone **7** by incorporating aromatic and heteroaromatic ring systems to improve the affinity and evaluate higher affinity ligands for subtype selectivity


- 2: Modification of lead lactone by evaluation of bioisosteric replacements for the hydrogen bonding lactone fragment
- 3: *In-vitro* evaluation of target ligands in muscarinic receptor binding (CEREP, France) assay/subtype selectivity assays and solubility assays
- 4: Use the information from the preliminary data in the design of new ligands

sponsored:


pharmaceuticals

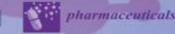
Proposed bioisostere based scaffold



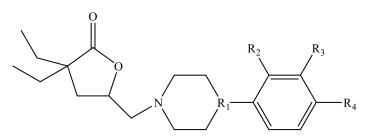
Proposed bioisosteres for lactone ring

Proposed lactone bioisostere based ligands

Tetrahydrofuran


In-vitro evaluation of target ligands

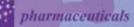
- The target compounds were evaluated in radioligand binding assays performed by CEREP, France using rat cerebral cortex membranes expressing muscarinic receptor subtypes $M_1 M_5$
- The test compounds were evaluated at a concentration of $10 \ \mu M$
- For interpretation of this type of preliminary data, CEREP suggests the following guidelines:
 - i. 50 % inhibition or higher represent significant effects (i.e. 50 % is a common cut-off value for further investigation).
 - ii. Results showing an inhibition between 20 and 50 % indicate weak to moderate effects.
 - iii. inhibition less than 20 % are considered inactive
- Solubility assay


6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

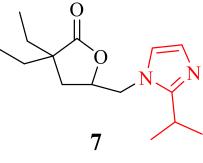
sponsored:

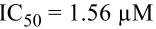
Results and discussion

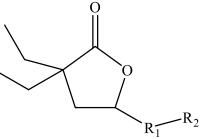
Preliminary binding data

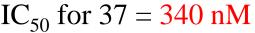


Compound #	R ₁	R ₂	R ₃	R ₄	% specific inhibition at 10 μ M
20	Ν	Н	Н	OCH ₃	26
21	Ν	Н	Н	CN	18
22	Ν	Н	Н	NO_2	18
23	Ν	Н	Н	OH	7
24	Ν	Н	Н	Н	16
25	Ν	OCH ₃	Н	Н	32
26	Ν	Н	OCH ₃	Н	9
27	Ν	ОН	Н	Н	46
28	Ν	CN	Н	Н	31
29	С	Н	Н	Н	68
30	С	CH ₃	Н	Н	57

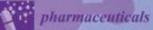

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

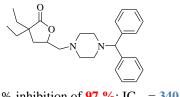

sponsored: MDPI

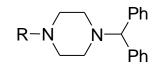



Preliminary binding data

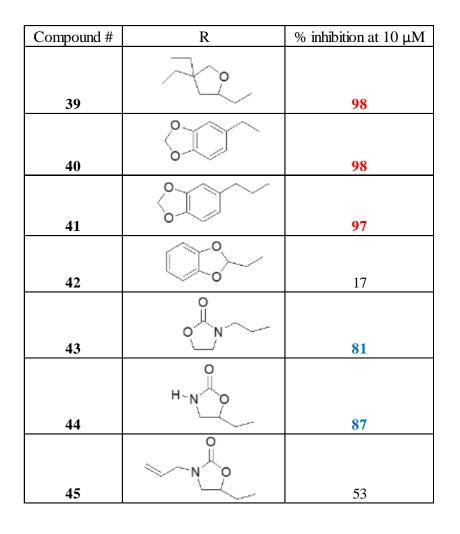
Compound #	R ₁	R ₂	% specific inhibition at 10 µM	
31	N		46	
32	×		57	
33	N		67	IC ₅₀ =
34	×	\bigcirc	44	0
35	N		5	
36	N	ç ²⁵ − F	28	
37	N	ξ< ^{Ph} Ph	97	
38	ξ−0−C−NH−√		31	IC_{50} for 37



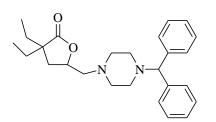



6th International Electronic Conference on **Medicinal Chemistry** 1-30 November 2020

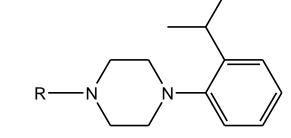
sponsored: MDPI



Preliminary binding data



% inhibition of **97** %; IC₅₀ = **340 nM**



Commound #	D	0 inhibition at 10 \cdot M
Compound #	R	% inhibition at 10 µM
	Ph ^{^_} N O	
46		66
	N O	
47		58
	, O	
48		74
	0	
	N´ O	
49		46
-	Q	-
	\frown	
	N´ O	
50		65
	0	
	\square	
	N° Ò	
51		80
	0	00
	I IIII	
	N O	
50		72
52		73

 IC_{50} for **40** = 280 nM

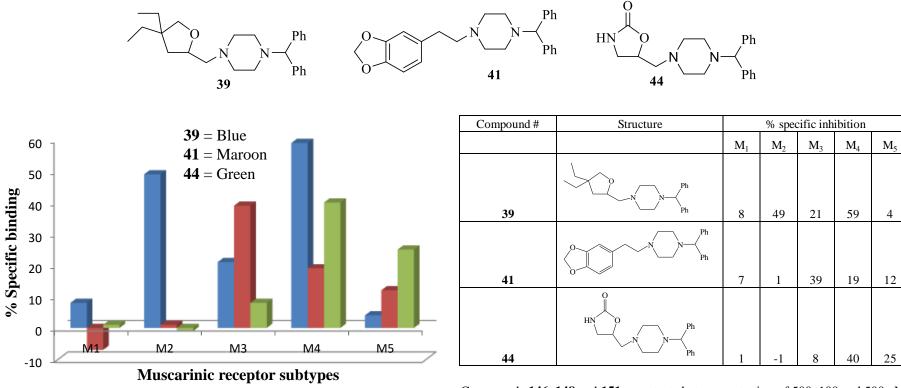
Preliminary binding data

% inhibition of **97** %; IC₅₀ = **340 nM**

Compound #	R	% inhibition at $10 \ \mu M$
53		54
54	· · · · · · · · · · · · · · · · · · ·	89

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDPI


	1		1		1	Preliminary binding data
Compound #	R	R ₁	R ₂	R ₃	% specific inhibition at 10 µM	<u>i reminary omanig data</u>
55	Н	Н			82	Ο
56	CH ₃	Н			82	R_{6}
57	C ₂ H ₅	Н			75	
58	(CH ₃) ₂ CH	Н			90	55-61, 63-66
59	NO ₂	Н			80	
60	(CH ₃) ₂ CH	Н			61	R_{3}
61					74	$R_1 \qquad 62 \qquad 1 \qquad R_3$
62	Н	Н	000		50	
63	Н	Н			23	
64	(CH ₃) ₂ CH	Н			14	
65	(CH ₃) ₂ CH	Н			33	
66	(CH ₃) ₂ CH	Н			38	

6th International Electronic Conference on **Medicinal Chemistry** 1-30 November 2020

Subtype selectivity

Compounds $146,\,148$ and 151 were tested at concentration of 500, 100 and 500 nM, respectively

pharmaceuticals

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDP

Solubility assay

- The test compounds were evaluated in solubility assay (kinetic) to determine the influence of solubility on binding characteristics.
- The test compounds are dissolved in DMSO and diluted with universal buffer (45 mM ethanolamine, 45 mM potassium dihydrogen phosphate and 45 mM potassium acetate) at pH 7.4.

pharmaceuticals

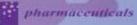
sponsored: MD

• After 90 mins, the solution is filtered and the sample concentration is analyzed by UV or Mass spec.

Solubility profile for oxazolidinone based compounds

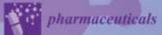
Compound #	Structure	% specific inhibition at $10 \mu M$	Solubility (µM)
43	O O N N Ph	81	83
44	HN O Ph	87	200
45	N O Ph N Ph	53	198
48	N O Ph	74	14.2
49	N N Ph Ph	46	200

sponsored: MDPI


pharmaceuticals

Solubility profile for chromone based compounds

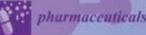
Compound #	Structure	% specific inhibition at 10 µM	Solubility (µM)
55		82	43.9
56		82	20
57		75	17.1
58		90	7.9
59		80	57.6
60	Ph Ph	61	5.5
61		74	4


Solubility profile for chromone based compounds

Compound #	Structure	% specific inhibition at $10 \ \mu M$	Solubility (µM)
62		50	52.2
63		23	200
64		14	4
65		33	3
66		38	2
67		15	3

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDPI



PDSP Analysis

- Compounds were chosen from the solubility study and sent to Psychoactive Drug Screening Laboratoty (PDSP) at University of North Carolina, Chapel Hill.
- Compounds having solubility of more than 10 µM were chosen.
- Oxazolidinones and chromones were screened against serotonin subtypes.
- Compounds were initially screened at a dose of 10 μM in the preliminary binding assay.
- Compounds with more than 50% inhibition in the preliminary binsing assay were evaluated for secondary binding and Ki was determined.

sponsored: MD

Oxazolidinones & Chromones* evaluated against a panel of Serotonin Receptors at PDSP Lab

Cmpd #	5-HT1A	5-HT1B	5-HT1D	5-HT1e	5-HT2A	5-HT2B	5-HT2C	5-HT3	5-HT4	5-HT5a	5-HT6	5-HT7
43	-	-	-	-	102	156	-	-	-	-	1362	-
44	-	-	-	-	-	201	-	-	-	-	-	4498
45		-	-	-	937	126	-	-	-	502	-	353
46	-	-	>10000	-	915	125	-	-	-	-	2345	305
47	-	-	-	-	-	274	-	-	-	873	-	881
48	-	-	-	-	-	1871	-	-	-		-	-
49	-	-	-	-	-	298	-	-	-	420	-	1267
50	162	-	2967	-	824	190	-	-	-	756	-	349
51	-	-	-	-	1211	41	-	-	-	1227	-	216
52	2386	>10000	-	-	159	237	-	-	-	-	-	-

cmpd #	5-HT1A	5-HT1B	5-HT1D	5-HT1e	5-HT2A	5-HT2B	5-HT2C	5-HT3	5-HT4	5-HT5a	5-HT6	5-HT7
55	819	-	-	-	-	387	278	-	-	-	-	489
56	1723	-	-	-	>10000	113	>10000	-	-	-	-	870
57	-	-	-	-	-	153	-	-	-	-	-	2580
63	-	-	-	-	601	101	-	-	-	-	-	1586

pharmaceuticals

sponsored: MD

*(Values are indicator of IC₅₀ in nM; "-" indicates % inhibition in preliminary binding assay to be less than 50%)

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Conclusions

- Oxazolidinone **51** having cyclopropyl substituent was found to be the most potent compound having an affinity of 41nM and having better affinity over other 5-HT subtypes.
- Among chromones, compound **56** was found to have affinity of 113 nM and better selectivity over other subtypes.
- Further studies needs to be to done to assess the binding characteristics to understand the influence of other substituents attached to nitrogen of oxazolidinone.

sponsored:

pharmaceuticals

Acknowledgments

RRB would like to thank Ajman University for extending support for this conference.

BB, JG, DJC would like to thank the Moulder Center for Drug Discovery, School of Pharmacy, Temple University for all the resources for this project.

ABS would like to thank Vignan College of Pharmacy for extending the support for this conference.

pharmaceuticals

sponsored: MD

