

6th International Electronic Conference on Medicinal Chemistry

1-30 November 2020 sciforum.net/conference/ECMC2020

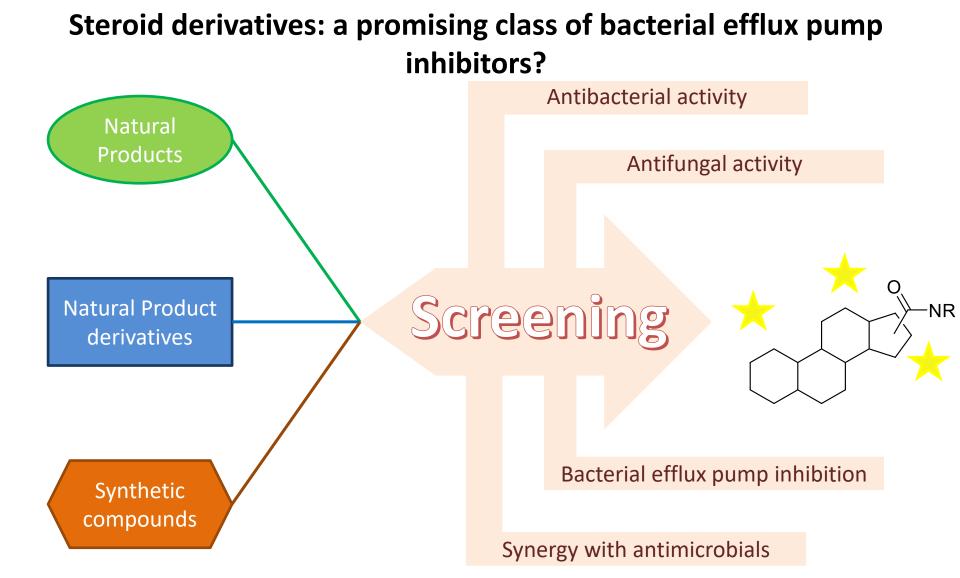
sponsored by
pharmaceuticals

Steroid derivatives: a promising class of bacterial efflux pump inhibitors?

Fernando Durães ^{1, 2}, Ana Rita Neves ^{1, 2}, Joana Freitas-da-Silva ^{2, 3}, Annamária Kincses ⁴, Eugénia Pinto ^{2, 5}, Paulo Costa ^{2, 3}, Madalena Pinto ^{1, 2}, Marta Correia-da-Silva ^{1, 2}, Gabriella Spengler ⁴, Emília Sousa ^{1, 2*}

¹ Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Portugal
 ² Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
 ³ ICBAS – Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
 ⁴ Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Hungary
 ⁵ Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal

* Corresponding author: esousa@ff.up.pt

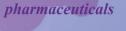


INSTITUTO DE CIÊNCIAS BIOMÉDICAS ABEL SALAZA UNIVERSIDADE DO PORTO

sponsored:

Abstract:

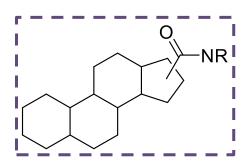
The quest for compounds capable of **circumventing antimicrobial resistance** is important and urgent. Current research has been focusing not only in the search for new antibiotics, but also for **"helper" compounds**, capable of **blocking resistance mechanisms** and, therefore, regaining the activity of currently used antibacterial drugs. In this scope, **bacterial efflux pump inhibitors** arise as interesting compounds, as they can block this resistance mechanism and lead to increased efficacy of antibiotics.


Our group has been studying the **potential of steroid derivatives**. One amide derivative was found to display promising activity in antibacterial and **in synergy assays**, as well as in the **efflux pump inhibition assays**.

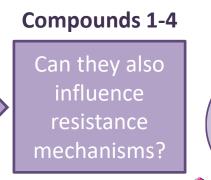
A screening for antimicrobial activity has been performed in Gram-positive and Gram-negative bacteria. Then, they were tested for their capability to modulate pump-mediated efflux. The derivatives tested were able to increase the accumulation of ethidium bromide, which translates into efflux pump inhibition.

Keywords: amides, antimicrobial, bacterial efflux pumps, steroid derivatives

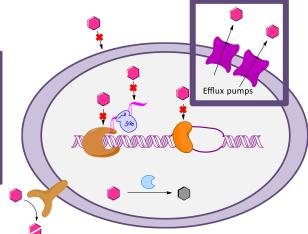
sponsored: MDPI


Introduction

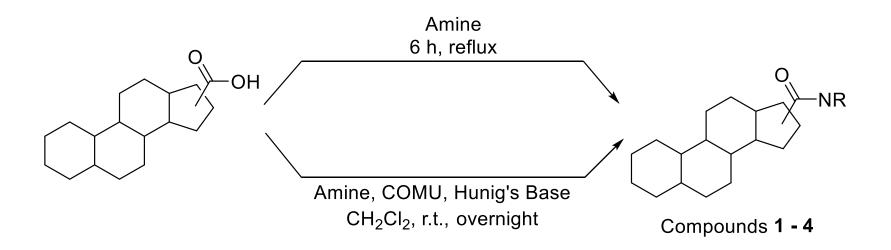
A screening of an in-house library of structurally diverse compounds was performed


Antimicrobial activity

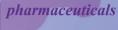
Antifungal activity


Synergy with antimicrobial drugs

Four steroid derivatives emerged as promising


6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDPI


Chemistry

The amide steroid derivatives were obtained through a coupling reaction with the desired amine

Antibacterial activity

Compounds 1-4 were tested against ATCC susceptible strains (*Escherichia coli* ATCC 25922, *Staphylococcus aureus* ATCC 29213, *Pseudomonas aeruginosa* ATCC 27853 and *Enterococcus faecalis* ATCC 29212)

	<i>E. coli</i> ATCC 25922		<i>S. aureus</i> ATCC 29213		P. aeru ATCC	ginosa 27853	<i>E. faecalis</i> ATCC 29212		
	MIC ¹	MBC ²	MIC	MBC	MIC	MBC	MIC	MBC	
1	73-147	147	37	37	147	147	37	73	
2	>139	ND ³	>139	ND	>139	ND	>139	ND	
3	>139	ND	>139	ND	>139	ND	>139	ND	
4	>139	ND	>139	ND	>139	ND	70	ND	

¹ Minimum Inhibitory Concentration (µM)

² Minimum Bactericidal Concentration (µM)

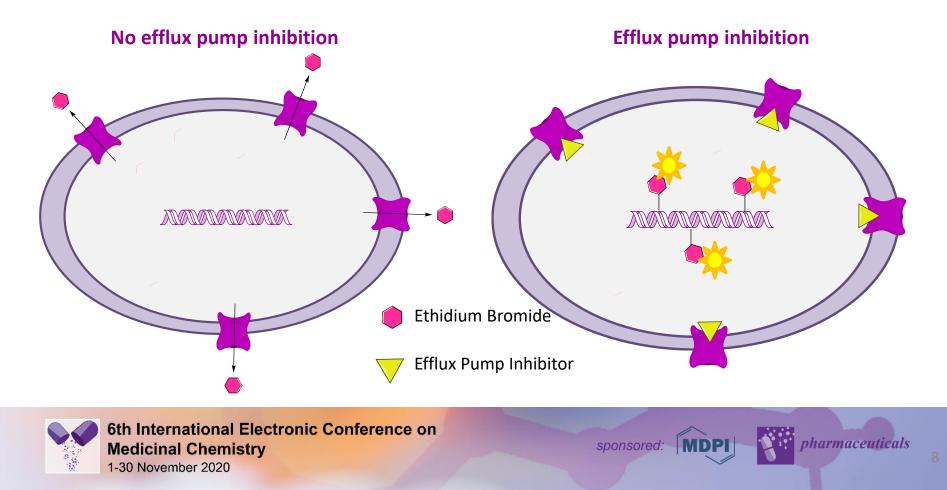
³ Not determined

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Antibacterial activity

Compounds 1-4 were tested against resistant (*S. aureus* MRSA 272123) and a mutant strain with the *acrA* gene deleted (*Salmonella enterica* serovar Typhimurium SL1344), in order to access their capability of inhibiting bacterial efflux pumps

	S. aureus MRSA 272123	S. Typhimurium SL1344			
	MIC ¹	MIC			
1	12.5	6.25			
2	>100	>100			
3	>100	>100			
4	>100	>100			


 1 Minimum inhibitory concentration ($\mu M)$

Bacterial Efflux Pump Inhibition

Compounds 1-4 were assayed for their capability of inhibiting bacterial efflux pumps in *S. aureus* MRSA 272123 and *S. enterica* Typhimurium SL1344 through the accumulation of ethidium bromide, an efflux pump substrate, capable of increasing fluorescence

Bacterial Efflux Pump Inhibition

All the derivatives showed a higher relative fluorescence index (RFI) than reserpine (positive control) after 60 minutes of incubation for *S*. Typhimurium, and three derivatives led to a higher RFI than reserpine in *S*. *aureus*

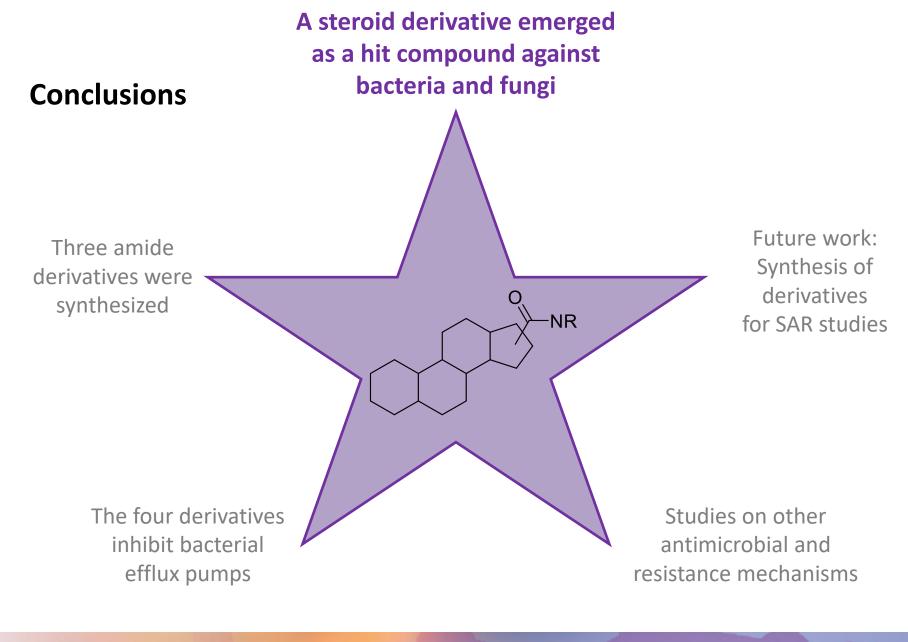
		<i>S. aureus</i> MRSA 272123	S. Typhimurium SL1344			
	Compound	RFI				
$RFI = \frac{RF_{treated} - RF_{untreated}}{RFI}$	1	0.14	1.07			
$RFI = {RF_{untreated}}$	2	2.33	2.27			
	3	1.77	1.08			
	4	0.80	5.15			
	Reserpine	0.70	0.51			

Antifungal activity

Compound 1 was also tested for its antifungal activity in strains susceptible (*Candida albicans* ATCC 10231, *Aspergillus fumigatus* ATCC 46645 and *Tricophyton rubrum* FF5) and resistant to azoles (*Candida krusei* ATCC 6258, *C. albicans* D5 and *A. fumigatus* C111)

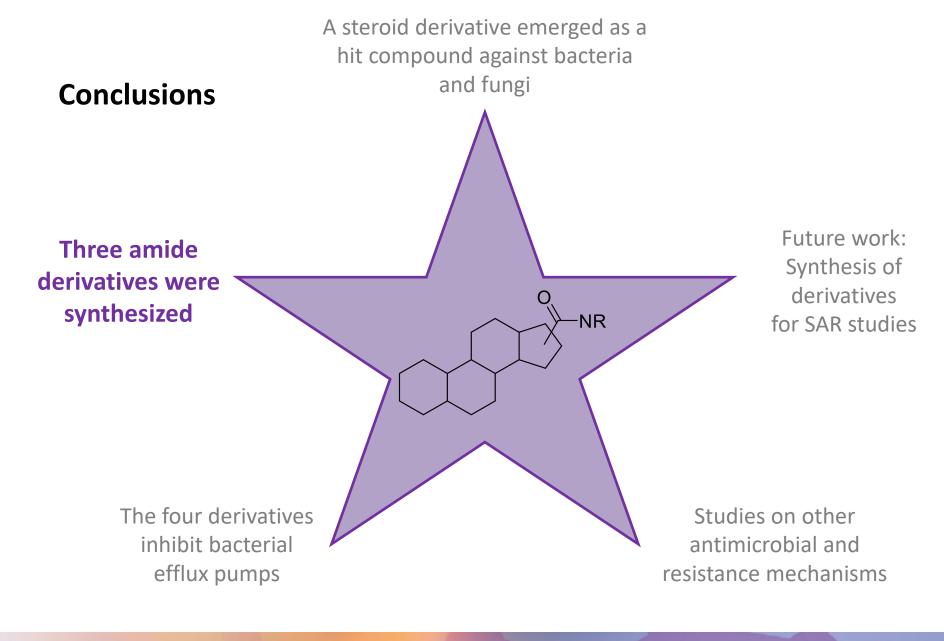
	<i>C. albicans</i> ATCC 10231			icans 5	С. кі атсс	rusei 6258	<i>A. fumigatus</i> ATCC 46645		A. fumigatus C111		<i>T. rubrum</i> FF5	
	MIC	MFC ¹	MIC	MFC	MIC	MFC	MIC	MFC	MIC	MFC	MIC	MFC
1	147	147	147	147	147	147	294	>294	294	>294	147	147

¹ Minimum Fungicidal Concentration (µM)

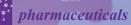

Compound 1 was also able to inhibit the filamentation of *C. albicans*: 147 μ M: 100%; 74 μ M: 96.72%; 37 μ M: 41.22%; 18 μ M: 0%

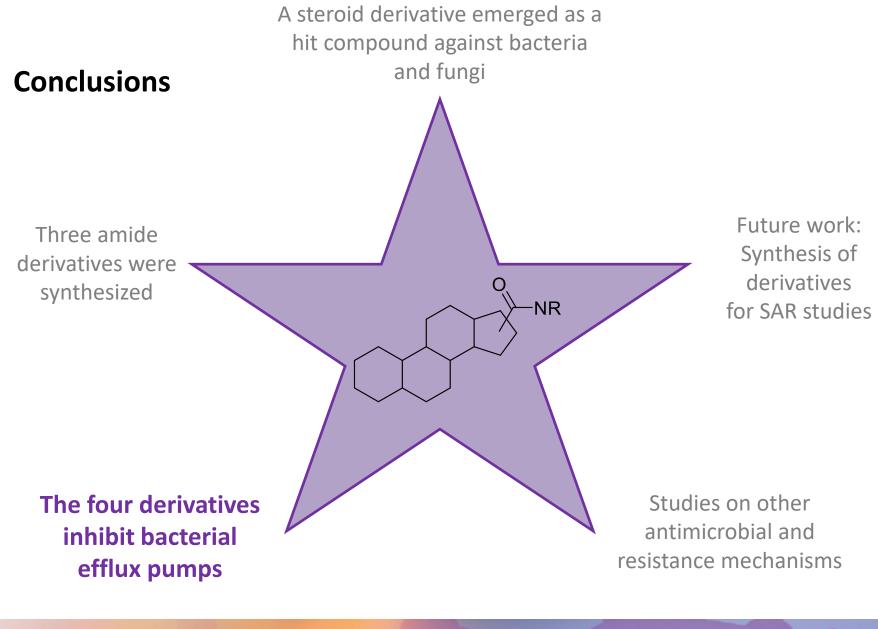
pharmaceuticals

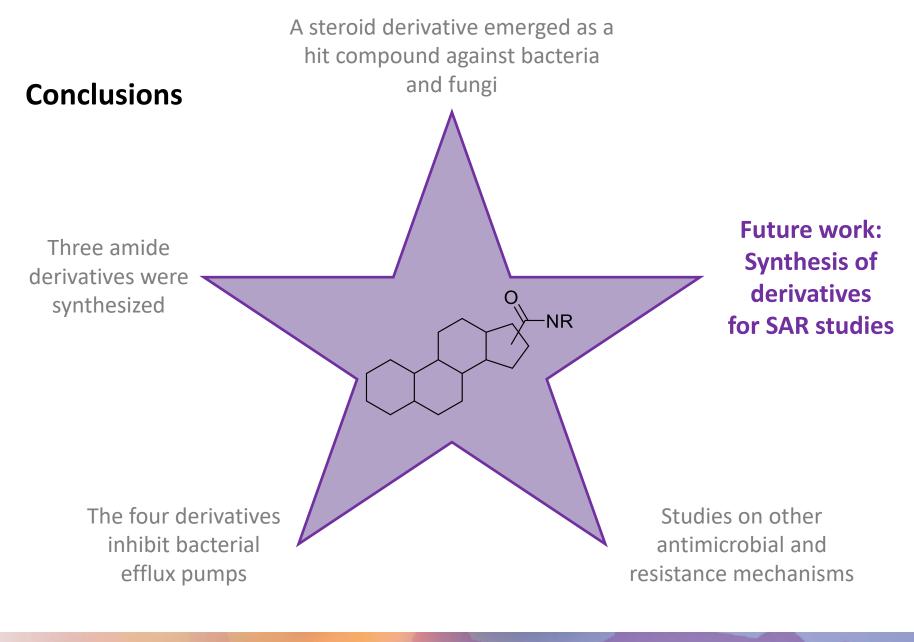
sponsored: MDF

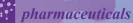


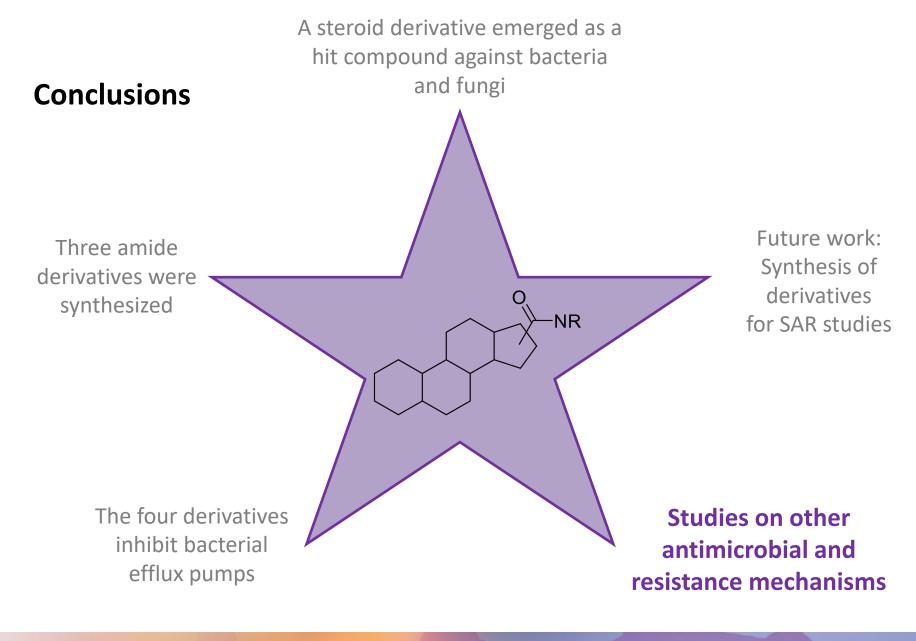
6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020




sponsored: MDP


sponsored: MDF




sponsored: MDF

sponsored: MDF

sponsored: MDF

Acknowledgments

UNIÃO EUROPEIA Fundo Europeu de Desenvolvimento Regional

pharmaceuticals

This research was supported by national funds through FCT—Foundation for Science and Technology within the scope of UIDB/04423/2020, UIDP/04423/2020 (Group of Natural Products and Medicinal Chemistry_CIIMAR), and under the project PTDC/SAU-PUB/28736/2017 (reference POCI-01-0145-FEDER-028736), co-financed by COMPETE 2020, Portugal 2020 and the European Union through the ERDF and by FCT through national funds.

Fernando Durães and Ana Rita Neves acknowledge their PhD grants SFRH/BD/144681/2019 and SFRH/BD/114856/2016.

The authors thank Dr. Jessica Blair (Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK) for providing the *Salmonella* strain.

sponsored:

6th International Electronic Conference on Medicinal Chemistry

1-30 November 2020 sciforum.net/conference/ECMC2020

sponsored by
pharmaceuticals

Steroid derivatives: a promising class of bacterial efflux pump inhibitors?

Fernando Durães ^{1, 2}, Ana Rita Neves ^{1, 2}, Joana Freitas-da-Silva ^{2, 3}, Annamária Kincses ⁴, Eugénia Pinto ^{2, 5}, Paulo Costa ^{2, 3}, Madalena Pinto ^{1, 2}, Marta Correia-da-Silva ^{1, 2}, Gabriella Spengler ⁴, Emília Sousa ^{1, 2*}

¹ Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, Portugal
 ² Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
 ³ ICBAS – Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
 ⁴ Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Hungary
 ⁵ Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal

* Corresponding author: esousa@ff.up.pt

INSTITUTO DE CIÊNCIAS BIOMÉDICAS ABEL SALAZAI UNIVERSIDADE DO PORTO

