

6th International Electronic Conference on Medicinal Chemistry

1-30 November 2020 sciforum.net/conference/ECMC2020

Synthesis and Biological Evaluation of Novel Long-Chain Arylpiperazine Derivatives Targeting Multiple Serotonin Receptors as Potential Drugs for Autism Spectrum Disorder

Enza Lacivita ¹, Mauro Niso ¹, Margherita Mastromarino ¹, Andrea G. Silva ², Cibell Resch ³, Andre Zeug ³, M. Isabel Loza ², Marián Castro ², Evgeni Ponimaskin ³, Marcello Leopoldo ^{1,*}

¹ Dipartimento di Farmacia – Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy

² Center for Research in Molecular Medicine and Chronic Diseases (CIMUS). Universidade de Santiago de Compostela. Avda. de Barcelona, s/n, 15782 Santiago de Compostela, Spain

³ Cellular Neurophysiology, Hannover Medical School, Hannover, Germany

* Corresponding author: marcello.leopoldo@uniba.it

Synthesis and Biological Evaluation of Novel Long-Chain Arylpiperazine Derivatives Targeting Multiple Serotonin Receptors as Potential Drugs for Autism Spectrum Disorder

Graphical Abstract

sponsored:

pharmaceuticals

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Abstract

Multiple pieces of evidence suggest that targeting serotonin receptors might have the potential to treat the core symptoms of autism spectrum disorder. We have pursued a knowledge-based design strategy to identify novel arylpiperazine derivatives with dual serotonin 5-HT_{1A}/5-HT₇ receptor agonist or mixed serotonin 5-HT_{1A} agonist/5- HT_7 agonist/5- HT_{2A} receptor antagonist properties. Seventeen new compounds were synthesized and tested in radioligand binding assay at serotonin 5-HT_{1A}, 5-HT₇, and 5- HT_{2A} receptors, which are predicted to improve core symptoms of ASD. We identified a dual 5-HT_{1A}R/5-HT₇ receptor agonist and a mixed 5-HT_{1A} agonist/ 5-HT₇ agonist/5-HT_{2A} receptor antagonist. Both compounds are metabolically stable in vitro and have suitable central nervous system drug-like properties.

Keywords: autism; serotonin; arylpiperazine; SAR

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Introduction

Autism Spectrum Disorder (ASD) refers to a group of neurodevelopmental disorder characterized by:

- Persistent deficits in social communication and social interaction across multiple contexts
- Restricted, repetitive patterns of behavior, interests, or activities

(as defined by the Diagnostic and Statistical Manual of Mental Disorders DSM-5)

The frequency of ASD is increasing, with present rates of about 1 in 100 children in Europe and 1 in 54 in the United States (www.cdc.gov/ncbddd/autism/data.html)

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDP

Estimated Autism Prevalence 2020

Neuropathologies

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

These medicines treat irritability associated with the ASD. By relieving irritability they often improve sociability while reducing tantrums, aggressive outbursts and self-injurious behaviors.

Drug targets for ASD neuropathologies

For details see: Lacivita E, Perrone R, Margari L, Leopoldo M. Targets for Drug Therapy for Autism Spectrum Disorder: Challenges and Future Directions. *J Med Chem.* **2017**;60:9114.

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

The serotonin system and ASD

Neuroscience 321 (2016) 24-41

REVIEW

THE SEROTONIN SYSTEM IN AUTISM SPECTRUM DISORDER: FROM BIOMARKER TO ANIMAL MODELS

C. L. MULLER, a A. M. J. ANACKER b AND J. VEENSTRA-VANDERWEELE $^{\mbox{\tiny C*}}$

- Platelet hyperserotonemia: ~70% increase of 5-HT level in platelet is observed in ~30% of ASD patients
- Various serotonin-related genes has been associated to ASD in humans
- Serotonin function is important in postnatal brain development

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Targeting Serotonin Receptors in ASD

 $5-HT_{1A}$ receptor agonist treatment alleviate a reversal learning deficit in a mouse model of schizophrenia (McLean et al. 2009; Rajagopal et al. 2016)

Tandospirone reduces marble burying behavior in wistar rats (Abe et al. 1998)

J Pediatr 2016;170:45-53

Efficacy of Low-Dose Buspirone for Restricted and Repetitive Behavior in Young Children with Autism Spectrum Disorder: A Randomized Trial

Diane C. Chugani, PhD^{1,2}, Harry T. Chugani, MD^{1,2,3}, Max Wiznitzer, MD⁴, Sumit Parikh, MD⁵, Patricia A. Evans, MD, PhD⁶, Robin L. Hansen, MD⁷, Ruth Nass, MD^{8,9}, James J. Janisse, PhD¹⁰, Pamela Dixon-Thomas, PhD¹, Michael Behen, PhD^{1,2}, Robert Rothermel, PhD¹¹, Jacqueline S. Parker, BSc^{1,2}, Ajay Kumar, MD, PhD^{1,2,3,12}, Otto Muzik, PhD^{1,2,3,12}, David J. Edwards, PharmD¹³, and Deborah Hirtz, MD¹⁴, on behalf of the Autism Center of Excellence Network*

Buspirone

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Targeting Serotonin Receptors in ASD

Genes, Brain and Behavior (2017) 16: 342–351

5HT_{2A} receptor blockade in dorsomedial striatum reduces repetitive behaviors in BTBR mice

D. A. Amodeo^{†,¶}, E. Rivera[†], E. H. Cook Jr[‡], J. A. Sweeney[§] and M. E. Ragozzino^{†,*}

6th International Electronic Conference on BuspiMartecinal Chemistry 1-30 November 2020

Targeting Serotonin Receptors in ASD

Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling **Rett syndrome**

Bianca De Filippis^{1*}, Valentina Chiodi², Walter Adriani¹, Enza Lacivita³, Cinzia Mallozzi¹, Marcello Leopoldo³, Maria Rosaria Domenici², Andrea Fuso^{4,5} and Giovanni Laviola¹*

Bianca De Filippis¹, Paola Nativio², Alessia Fabbri³, Laura Ricceri¹, Walter Adriani¹, Enza Lacivita⁴, Marcello Leopoldo⁴, Francesca Passarelli², Andrea Fuso^{5,6} and Giovanni Laviola*,¹

Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy; ²Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; ³Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy; ⁴Department of Pharmacy, University of Bari 'A Moro', Bari, Italy; ⁵Department of Psychology, Section of Neuroscience, Sapienza University of Rome, Rome, Italy European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Ita

Neuropharmacology 121 (2017) 79-88

Stimulation of the brain serotonin receptor 7 rescues mitochondrial dysfunction in female mice from two models of Rett syndrome

Daniela Valenti ^{a, **}, Lidia de Bari ^a, Daniele Vigli ^b, Enza Lacivita ^c, Marcello Leopoldo ^c, Giovanni Laviola ^b, Rosa Anna Vacca ^{a, 1}, Bianca De Filippis ^{b, *, 1}

npg

pharmaceuticals

Targeting Multiple Serotonin Receptors in ASD: our hypothesis

Dual 5-HT₇/5-HT_{1A} (partial) agonists

- increase social interaction through activation of 5-HT_{1A} receptor
- reduce stereotypy and/or improve cognition through activation of 5-HT7 receptor

Mixed $5-HT_{1A}/5-HT_7$ agonist/ $5-HT_{2A}$ antagonist

- improve social behavior through activation of 5-HT $_{1A}$ receptor
- reduce or eliminate stereotyped behavior by blocking 5-HT_{2A} receptor
- improve cognition through activation of 5-HT₇ receptor

sponsored: MD

pharmaceuticals

Mixed $5-HT_{1A}/5-HT_7$ agonist/ $5-HT_{2A}$ antagonists ?

Terminus-Intermediate chain-PIPERAZINE-Ar

KNOWLEDGE-BASED DESIGN

Combination of fragments responsible for the desired activity at 5-HT receptors

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Structural motif for agonist activity at 5-HT₇ receptor

Structural motif for agonist activity at $5-HT_{1A}$ receptor

WAY-100635 (antagonist) Forster et al. Eur J. Pharmacol. 1995

compound 16 (partial agonist) Bojarski et al. Bioorg Med Chem. 2006

UCN-2550 (agonist) López-Rodríguez et al. J Med Chem. 2005

MMP (CUMI-101) (agonist) Kumar et al. Eur. J. Nucl. Med. Mol. Imaging 2007

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Structural motif for antagonist activity at 5-HT_{2A} receptor

Aripiprazole (antagonist) Forster et al. Eur J. Pharmacol. 1995

Brilaroxazine (antagonist) Cantillon et al. Schizophr Res. 2017

Risperidone (antagonist) Forster et al. Eur J. Pharmacol. 1995 Compound 14m (antagonist) Chen et al. J Med Chem. 2013

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored:

pharmaceuticals

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Synthesis of the Target Compounds

Reagents: A) Pd(dppf)Cl₂; 2M Na₂CO₃; B) bis(2-chloroethyl)amine·HCl, K₂CO₃, KI

Reagents: A) ethyl acetoacetate; conc. H_2SO_4 ; B) 1-arylpiperazine; K_2CO_3 ; C) NaH, Br–(CH₂)_n–X

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Results and Discussion

Radioligand Binding and in vitro Metabolic Stability Data

Cmpd	Structure		MPO ^a	<i>K</i> i[nM]			<i>K</i> i ratio			MS [♭] (%)	
				5-HT _{1A}	5-HT ₇	5-HT _{2A}	D ₂	5-HT _{1A} /5-HT ₇	5-HT _{2A} /5-HT ₇	5-HT _{2A} /5-HT _{1A}	
AG4		n= 2	5.24	1721	80.0	2350	6577	22	29	1.4	17
AG44		n= 3	5.32	358	11.2	90.8	2084	32	8.1	0.25	< 2
ST58	осн _а	n= 4	4.74	3.77	13	117	508	0.3	9	31	28
AG14	$(\mathcal{M}_{\mathcal{M}_{n}}^{N}) (\mathcal{M}_{n}^{CH_{3}}) (\mathcal{M}_{n}^{N}) (\mathcal{M}_{n}^{CH_{3}}) $	n= 2	3.91	289	25.6	73.5	592	11	2.9	0.25	21
ST143		n= 2	3.64	673	15.6	6.50	2972	43	0.41	0.01	14
AG28		n= 2	3.21	1761	91.7	220	301	19	2.4	8	< 2
AG45	of of the second	n= 3	3.11	51.6	47.3	44.9	330	1.1	0.9	0.9	39
AB9	сн _а осн _а	n= 4	2.76	135	42.9	54.7	147	3	1.3	0.2	20
AG16		n= 2	3.38	1802	57.2	312	541	32	5.5	0.2	28
AG47		n= 3	3.30	23.2	17.7	130	196	1.3	7.3	5.6	58
ST71	ÒСН ₃	n= 4	2.94	127	14.7	107	82.8	9	7.3	0.65	49
ST72			3.44	8.70	19.9	141	419	0.44	7	16	68
AG27	CNN CH3	n= 2	5.06	1648	51.6	2218	4955	32	43	1.3	< 2
AG26		n= 3	5.20	290	6.69	36.7	2148	43	5.5	8	18
MS12	GI-CH-N-OCH3		3.04	264	44.3	310	845	6	7	1.2	34.6

^a MPO: Multiparameter Optimization

^bMS: In vitro Microsomal Stability (% of recovery of the parent compound after 30 min incubation with rat microsomes)

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Compound	t _{1/2} (min)	CL _{int} (μL/mg/min)
LP-211	15	45.9
TP-22	45	16.1
ST-58	41	16.9
AG-45	39	17.7
AB-9	23	30
AG-16	49	14.1
AG-47	60	11.5
ST-71	63	11
ST-72	74	9.4
MS-12	58	12

Half-life and Intrinsic Clearance of Selected Compounds

The data indicate that all the selected compounds showed higher stability than LP-211, with intrinsic clearance values lower up to 5-fold as in the case of compound ST-72. Thus, these compounds are predicted to be low-clearance compounds and suitable for studies in vivo

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Functional study at 5-HT₇ receptor (cAMP signalling)

Time [min]

Compounds **ST-58**, **AG-45**, and **ST-72** stimulate 5-HT₇ receptor-mediated cAMP production. N1E cells were transfected with cAMP FRET-based biosensor CEPAC and 5-HT₇R-mCherry. Cells were stimulated with the compounds, as indicated. Mean values of the cAMP-biosensor response upon stimulation with **ST-58**, **AG-45**, and **ST-72** are shown. LP-211 and 5-CT were used as controls.

Time [min]

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Functional study at 5-HT_{1A} receptor (cAMP signalling)

Time / min

6th International Electronic Conference on **Medicinal Chemistry** 1-30 November 2020

Compounds ST-58, AG-45, and ST-72 behave as 5- $HT_{1\Delta}$ receptor agonists in the receptor-mediated cAMP inhibition. N1E cells were transfected with cAMP FRET-based biosensor CEPAC and 5-HT₁₄ receptor-mCherry. After pre-treatment with 1 µM forskolin and 25 µM IBMX, cells were stimulated with the indicated compounds. Each trace shows cAMP response at the single cell.

sponsored:

Functional study at 5-HT_{2A} receptor (inositol phosphate signalling)

Concentration-response inhibition curves of AG-45 and risperidone (as reference 5-HT_{2A} receptor antagonist) on inositol phosphate production stimulated by 1 μ M 5-HT in CHO-K1 cells expressing human 5-HT_{2A} receptors.

6th International Electronic Conference on **Medicinal Chemistry** 1-30 November 2020

sponsored:

pharmaceuticals

Conclusions

- 5-HT neurotransmission system is an active area of investigation in ASD research since 1961
- SSRIs are efficacious to treat obsessive-compulsive disorder
- However, clinical studies indicate that SSRIs are not effective on the core symptoms of ASD
- Literature data suggest the investigation of new combinations of activities at 5-HT receptors
- We have identified new compounds with dual 5-HT_{1A}/5-HT₇ agonist properties (ST-58, ST-72) and the mixed 5-HT_{1A}/5-HT₇ agonist/5-HT_{2A} antagonist characteristics (AG-45)
- These compounds are metabolically stable in vitro and have suitable CNS drug-like properties
- Behavioral studies in animal models of ASD are in progress

Acknowledgments

Enza Lacivita University of Bari, Italy

Mauro Niso University of Bari, Italy

Evgeni Ponimaskin Hannover Medical School, Germany

Marian Castro University of Santiago de Compostela, Spain

Funding support

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

