

6th International Electronic Conference on Medicinal Chemistry

1-30 November 2020 sciforum.net/conference/ECMC2020

Indeno[1,2-b]indole Scaffold in Drug Discovery: An Effective Template in Kinase Inhibitor Medicinal Chemistry

Robin Birus ¹, Christelle Marminon ^{2,3}, Dagmar Aichele ¹, Samer Haidar ¹, Marine Ousset ¹, Laurent Ettouati ², Faten Al Chab ², Solène Audebert ³, Marc Rolland de Ravel ³, Noël Pinaud ⁴, Zouhair Bouaziz ², Jean Guillon ⁵, Joachim Jose ^{1,*}, and Marc Le Borgne ^{2,3,*}

¹ Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, PharmaCampus, 48149, Münster, Germany; ² EA 4446 B2MC, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon France; ³ Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, 69373, France; ⁴ ISM - UMR5255, Univ Bordeaux, 33405 Talence cedex, France; ⁵ ARNA Laboratory, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, Bordeaux, France.

Indeno[1,2-b]indole Scaffold in Drug Discovery: An Effective Template in Kinase Inhibitor Medicinal Chemistry

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

pharmaceuticals

Abstract:

Casein kinase 2 (CK2) is a highly pleiotropic serine/threonine protein kinase whose list of substrates includes >300 proteins implicated in a wide variety of cell functions. The catalytic subunits of CK2 (alpha and/or alpha') are constitutively active either alone or in combination with the regulatory beta-subunits to give a heterotetrameric protein. High constitutive activity of CK2 is related to contribute to cancer. Based on recent years of effort, a German French collaborative network has developed indeno[1,2-*b*]indole scaffold for designing novel inhibitors of human CK2. **The aim of this study** is to develop functionalized indeno[1,2-*b*]indoles and to investigate their potential inhibitory activity against human CK2. The different aspects of medicinal chemistry will be discussed, namely synthesis, NMR investigations, X-ray crystallography, CK2 inhibition, *in cellulo* activities, molecular modelling and physico-chemical properties.

Keywords: indenoindole synthesis; spectra resources; protein kinase CK2; physicochemical properties; *in cellulo* permeability

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Introduction

Protein kinase CK2

Introduction

Tricyclic backbones of known ATP-competitive low molecular weight (LMW) inhibitors of CK2

Cozza, G. et al. ChemMedChem 2011, **6**:2273-86 Protopopov, M.V. et al. Bioorg Chem 2020, **102**:104062

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

pharmaceuticals

Introduction

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

6

Results and discussion – *Synthesis of indeno[1,2-b]indoles*

pharmaceuticals

MDPI

sponsored:

Results and discussion – *Synthesis of indeno[1,2-b]indoles*

Marminon, C. et al. Tetrahedron Lett 2015, 56:1840-42

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDPI pharmaceuticals

Results and discussion – *Synthesis of indeno[1,2-b]indoles*

Medicinal Chemistry

1-30 November 2020

Results and discussion – 24 indeno[1,2-b]indoles synthesized

AR15

4р

NA8b

NA28-1

MDPI

sponsored:

AF3

4v

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Results and discussion – 24 indeno[1,2-b]indoles synthesized

BZA1

BZA3

AF4

BZA32

ZW18

Ĥ

|| 0

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDPI

Results and discussion – 24 indeno[1,2-b]indoles synthesized

6b

СМ3079В

AP05

6c

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDPI

Results and discussion – NMR data

sponsored:

MDPI

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Results and discussion – *NMR data*

No.	AF3	l		AF4			AF5	L	
-	δH (mult, J in Hz)	δC	HMBC	$\delta H (mult, J in Hz)$	δC	HMBC	δ H (mult, J in Hz)	δC	HMBC
1	7.44 (d, 7.1)	123.8	C-2,3,4a,10	7,35 (d, 6.9)	123.3	C-2,4a,10	7,62 (d, 7.2)	124.7	C-4,4a,10
2	7.11 m	128.1	C-4a,10a	7,11 (t, 7.3)	129.1	C-4,10a	7,31 (dt, 3;7.1)	130.0	C-1,3,4a,10a
3	7.23 m	132.2	C-1,4a	7,22 (t, 7.5)	132.2	C-1,4a	7,42 m	121.2	C-1,2,4a,10a
4	7.11 m	118.8	C-2,4b,10a	7,16 (d, 7.2)	119.8	C-4b,10a	7,43 (dt, 0.9;7.5)	133.3	C-1,2,4a,4b
4a	—	135.4		—	136.5	—	—	134.4	—
4b	—	151.8		—	155.3	—	—	154.8	—
5a	—	148.7	—	—	142.9	—	_	146.7	—
6	2.92 (dd, 4.3 and 16.2) 2.50 m	31.7	C-4',5a,6,8,,9a	6,72 s	104.9	C-4',9,9a	_	178.6	—
7	2.39 m	31.1	C-4',7,8	—	135.7	—	6,50 (q, 1.5)	121.6	—
8	2.54 (dd, 3.6 and 16.2) 2.20 (dd, 11.8 and 16.2)	46.1	C-4',7.9,9a,9b	6,49 s	109.2	C-4',6,9,9a	—	132.7	C-4', 5a,6,7,9a,9b
9	_	191.9	—	—	149.7	—	_	181.8	—
9a	—	117.4		—	111.4	—		123.3	—
9b	—	120.8	—	—	115.7	—		134.1	—
10	—	184.2		—	186.1	—		183.6	—
10a	—	138.9	—	—	140.6	—		140.2	—
1'	4.62 (sept, 7.1)	49.4	C-3'.4b,5a	4,81 (sept 6.9)	49.5	C-2',3',4b,5a	5,83 br s	50.6	_
2'	1.65 (d, 7.3)	22.0	C-1',3'	1,70 (d 7)	22.2	C-1',3'	1,69 (d, 7.1)	21.1	C-1',3'
3'	1.64 (d, 7)	21.9	C-1',2'	1,70 (d 7)	21.8	C-1',2'	1,69 (d, 7.1)	21.1	C-1',2'
4'	1.17 (d, 6.5)	21.3	C-6,8	2,39 s	21.8	C-6,7,8	2,10 (d, 1.5)	16.4	C-5a,6,8,9
OH	—		—	6.58 s	—	C-7,9,9a	_	—	—

Al Chab, F. et al. Magn Reson Chem 2013, 51:837-41

Results and discussion – *X-ray crystallography*

View of the crystal structures of **5b** and **6b** with our numbering scheme, displacement ellipsoids are drawn at the 20% probability level.

nearly planar with a mean out-of-plane deviation of 0.0271 Å with the largest deviation of 0.0542 (14) Å for atom C14

almost planar with a maximum deviation from planarity of 0.2430 Å, and the maximum deviation from planarity is found for C(14) lying 0.3379 (9) Å from the plane defined by the hetero-tetracyclic system

sponsored:

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Results and discussion – CK2 inhibitory activities

CE-electropherograms of CK2 reaction with and without inhibitor

A sample 20 nl of a CK2 reaction is injected into the capillary which is subsequently dipped into buffer vials containing the background electrolyte. The applied electronic field of 30 μ A current with flexible voltage separates the CK2 substrate **1** and its phosphorylated analog **2** while they migrate towards the cathode. An UV detector set to 214 nm at the outlet side of the capillary (20 cm effective length) quantitatively detects both peptides **1** and **2**.

Gratz, A. et al. Electrophoresis 2010, 31:634-40

sponsored:

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

16

Results and discussion – CK2 inhibitory activities

Best CK2 inhibitor

 $^{\rm a}$ The percent inhibition of CK2 activity was determined for each compound at a fixed concentration of 10 $\mu M.$

^b Determinations were performed in triplicate in independent experiments.

 $^{\rm c}$ For the best compounds producing at least 50% inhibition at 10 μM , the concentration was varied to precisely determine the IC⁵⁰ values.

No compound	% inhibition (10 μ M) ^a	IC ₅₀ (μΜ) ^b
4b	99	0.36 ^c
AR15	85	0.89
CM3146B	100	0.11
4р	99	0.14
NA8B	100	0.14
NA28-1	100	0.045
AF3	94	0.17
4v	94	0.43
4d	59	7.0
SiA3	66	2.50
5b	72	2.0
BZA1	77	2.04

6th International Electronic Conference on Medicinal Chemistry

1-30 November 2020

Results and discussion – CK2 inhibitory activities

Best CK2 inhibitor

 $^{\rm a}$ The percent inhibition of CK2 activity was determined for each compound at a fixed concentration of 10 $\mu M.$

^b Determinations were performed in triplicate in independent experiments.

 $^{\rm c}$ For the best compounds producing at least 50% inhibition at 10 μM , the concentration was varied to precisely determine the IC⁵⁰ values.

^dmeasured by the radiometric assay.

No compound	% inhibition (10 μ M) ^a	IC ₅₀ (μΜ) ^ь	
BZA3	81	3.44 ^c	
AF4	64	1.27	
BZA32	48	n.d.	
ZW18	91	1.76	
6b	60	5.55	
СМ3079В	40	n.d.	
AP05	63	5.93	
6c	-	1.49 ^d	
AF5	87	0.43	
AF20	82	1.65	
AF15	42	n.d.	
BZA21	44	n.d.	

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

18

pharmaceuticals

MDPI

sponsored:

Results and discussion – In cellulo activities of 16 indenoindoles

Tested compounds 100 µM (500 nM for staurosporin)

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

19

pharmaceuticals

sponsored:

MDPI

Results and discussion – In cellulo activities of 16 indenoindoles

Tested compounds 100 µM (500 nM for staurosporin)

MTT test

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

pharmaceuticals

MDPI

sponsored:

Results and discussion – *Physico-chemical properties and Bio*

Structure (code)	MarvinSketch 20.19.0	Molinspiration v 2018.10	ACD/ChemSketch 2020.1.2	CK2 IC ₅₀ (μM)	MCF-7 % viability
(AF3)	3.76	3.79	4.34 +/- 1.27	0.17	24h = 68% 48h = 30%
HO (NA8b)	2.87	2.81	3.53 +/- 1.27	0.14	24 h = 64% 48 h = 63%
(5b)	3.82	4.08	4.04 +/- 1.25	2.0	24 h = 72% 48 h = 52%

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Results and discussion – *Physico-chemical properties and Bio*

Structure (code)	MarvinSketch 20.19.0	Molinspiration v 2018.10	ACD/ChemSketch 2020.1.2	CK2 IC ₅₀ (μM)	MCF-7 % viability
(6b)	2.54	2.88	3.02 /- 1.50	5.55	24 h = 8% 48 h = 4%
(AP05)	3.02	3.26	3.55 +/- 1.50	5.93	24 h = 5% 48 h = 4%
(BZA21)	5.45	5.66	5.97 +/- 1.51	44 (% inh. at 10 μM)	24 h = 6% 48 h = 4%

6th International Electronic Conference on Medicinal Chemistry

1-30 November 2020

2D Interrelation of **NA-8b**, **5b** and **6b** with the amino acid residues of 3C13 crystal structure of CK2 enzyme (in the ATP binding pocket).

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

pharmaceuticals

3D Interrelation of **NA-8b** with the amino acid residues of 3C13 crystal structure of CK2 (in the ATP binding pocket).

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

pharmaceuticals

sponsored: MDPI

3D Interrelation of **5b** with the amino acid residues of 3C13 crystal structure of CK2 (in the ATP binding pocket).

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDPI

3D Interrelation of **6b** with the amino acid residues of 3C13 crystal structure of CK2 (in the ATP binding pocket).

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Conclusions

✓ cLogP and Bio data on CK2: Alkoxy group +++ on keto sub-series

cLogP = 3.53 ± 1.27 [ACD/ChemSketch 2019.2.1]

CK2, $IC_{50} = 0.14 \ \mu M$

MCF-7, % viability (after 48 h): ≈ 65%

cLogP = 4.29 ± 1.42 [ACD/ChemSketch 2019.2.1]

CK2, **IC**₅₀ = 45 nM

MCF-7, % viability (after 48 h): < 50%

6th International Electronic Conference on **Medicinal Chemistry** 1-30 November 2020

pharmaceuticals sponsored: MDPI

Acknowledgments

Aude Rollet Alexandra Chapuis

Waël Zeinyeh

Anthony Prandina

Abdelhamid Nacereddine

This scientific work was made possible by financial support from Rhône-Alpes region through the Cluster 5 Chemistry, the Canceropôle Lyon Auvergne Rhône-Alpes (CLARA) and Institut Convergence **PLASCAN** - Institut François Rabelais.

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

pharmaceuticals

MDPI

sponsored: