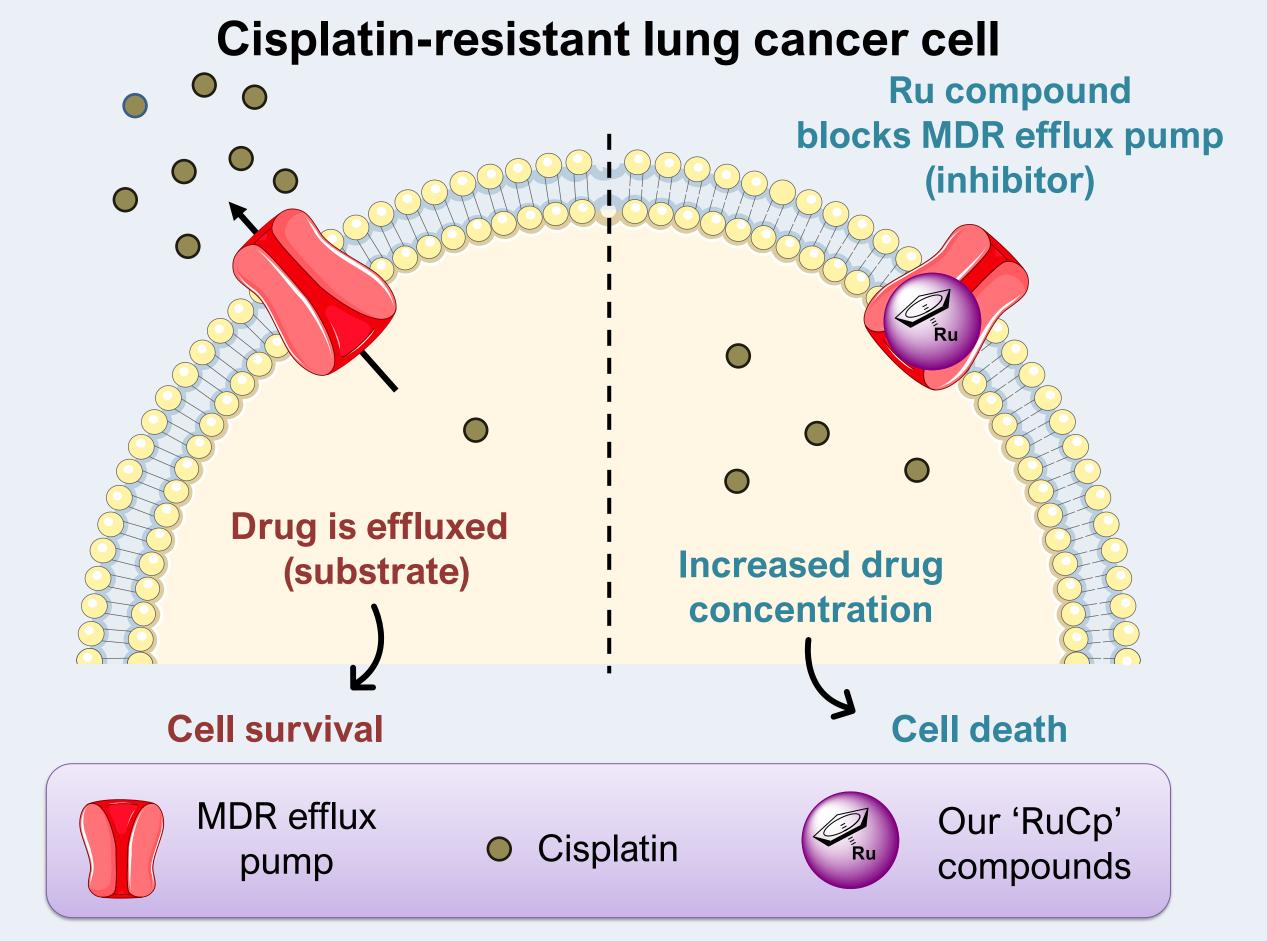
Ruthenium organometallic compounds as ABC drug efflux-targeted agents and collateral sensitizers


¹ Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
² Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
³ Department of Oncology, University of Torino, Italy.

rjteixeira@fc.ul.pt

RESULTS

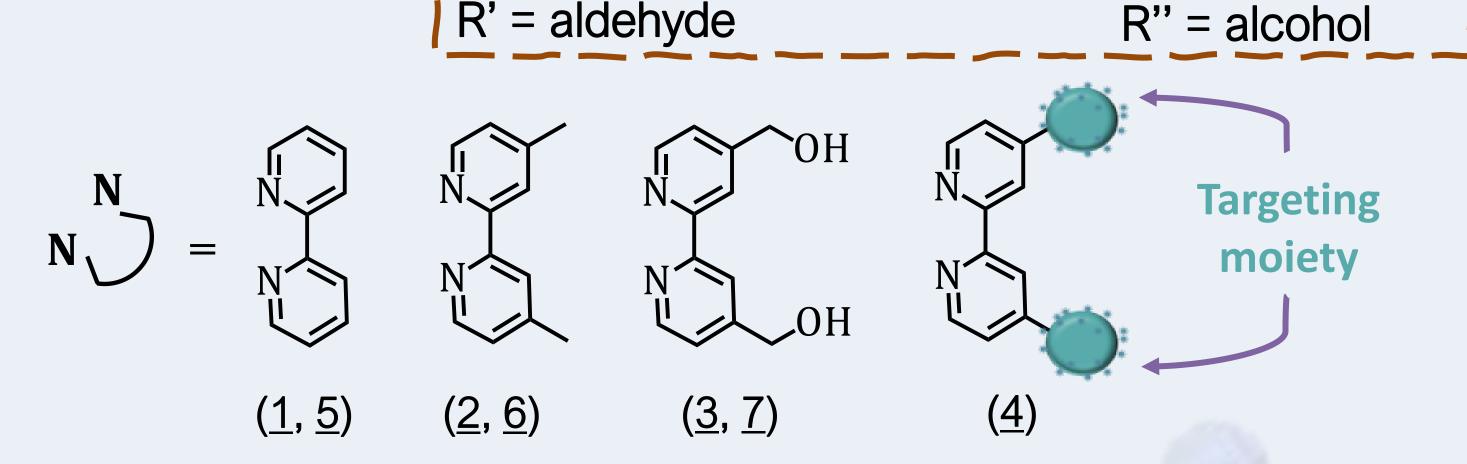
BACKGROUND

Our research group has been focused on exploring metal-based compounds, especially incorporating the "ruthenium-cyclopentadienyl" (*"RuCp"*) scaffold.[1] This moiety is an appealing and robust scaffold to build new molecules from where the judicious choice of co-ligands allows to impart different properties and to fine-tune the

SCOE

Ciências ULisboa

performance of the whole complex.


developed frame, compounds the this based we new ON In functionalized "RuCp" moiety containing bipyridyl ligands which were tested against four non-small cell lung cancer (NSCLC) cell lines: A549, NCI-H228, Calu-3 and NCI-H1975. Our preliminary results show that the compounds are more cytotoxic in cisplatin-resistant than in cisplatin-sensitive cells, and increased cisplatin cytotoxicity by inhibiting MRP1 and P-gp transporters. This work unveils the mechanism of action of these compounds, suggesting that drug efflux transporters could be a potential target, and, more importantly, indicates that they induce collateral sensitivity in cisplatinresistant lung cancer cells.

Collateral sensitivity

Table 2. Resistance factor (Rf = IC_{50} (cisplatin)/ IC_{50} (cisplatin + IC_{25} compound)) of the cell lines treated with cisplatin *versus* cisplatin and Ru compounds.

	<u>1</u>	<u>2</u>	<u>4</u>	<u>6</u>
A549	71.4	555.6	1250	243.9
NCI-H228	333.3	1389.9	588.2	344.8
Calu-3	26.3	126	33.2	78.7
NCI-H1975	2.9	0.6	1.6	0.7

- Seven new compounds were synthesized and characterized by several spectroscopic techniques
- Crystallographic studies confirmed the proposed 'piano-stool' geometry
- All compounds are stable in aqueous solutions over 24 h

In vitro screening in NSCLC

Table 1. IC_{50} (µM) of the new ruthenium compounds and cisplatin in the cell lines analyzed after 72 h of incubation.

	<u>1</u>	<u>2</u>	<u>4</u>	<u>6</u>	Cisplatin
A549	10.8 <u>+</u> 1.3	12.4 <u>+</u> 3.6	15.4 <u>+</u> 2.6	12.5 <u>+</u> 2.1	>100
NCI-H228	4.3 <u>+</u> 0.7	3.8 <u>+</u> 1.4	16.5 <u>+</u> 1.3	7.8 <u>+</u> 1.2	>100
Calu-3	24.7 <u>+</u> 4.1	4.9 <u>+</u> 1.6	28.9 <u>+</u> 0.8	5.9 <u>+</u> 1.2	63.4 <u>+</u> 8.7
NCI-H1975	91.8 <u>+</u> 10.4	>100	>100	>100	3.8 <u>+</u> 1.1

The selected compounds were able to increase cisplatin cytotoxicity (up to 1390-fold) when administrated at nontoxic doses

Inhibition of ABC transporters

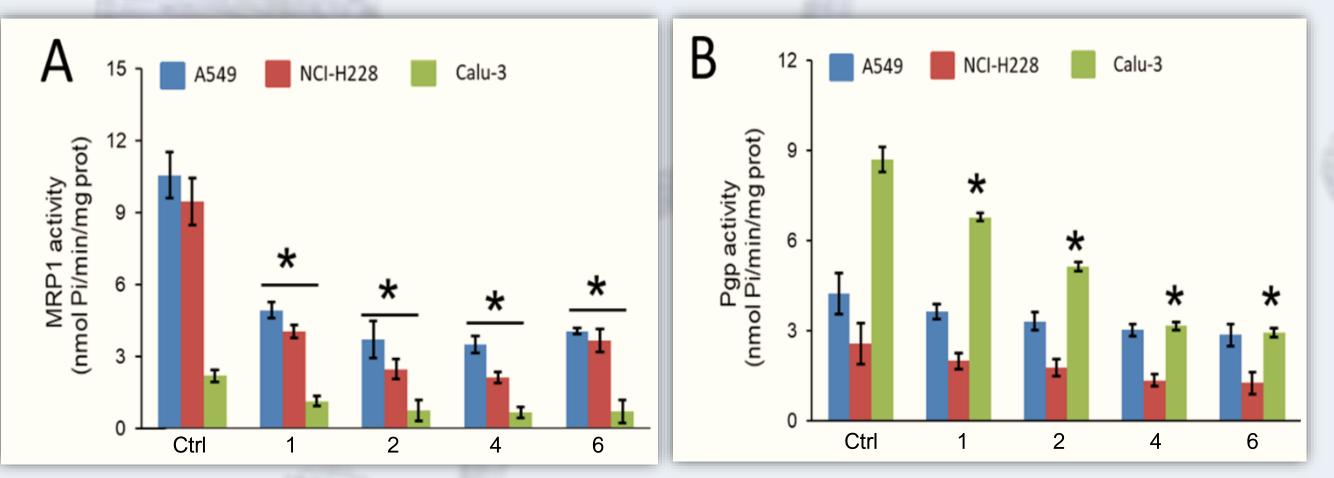


Figure 1. MRP1 (A) and P-gp (B) ATPase activity measured on the proteins immune-purified from cells treated without (ctrl) or with 1 μ M of compounds 1, 2, 4 and 6 for 24 h.

 Compounds <u>1</u>, <u>2</u>, <u>4</u> and <u>6</u> inhibited MRP1 and P-gp activity in A549, NCI-H228 and Calu-3 cell lines, which overexpress these transporters.

- Compounds <u>1</u>, <u>2</u>, <u>4</u> and <u>6</u> show strong activity against cisplatinresistant NSCLC A549 and NCI-H228
- Compounds <u>3</u>, <u>5</u> and <u>7</u> were inactive in the cell lines studied
- Seven new 'RuCp' compounds were successfully synthesized and characterized
- Compounds <u>1</u>, <u>2</u>, <u>4</u> and <u>6</u> were cytotoxic against NSCLC cell lines
- Our compounds increased the sensitivity to cisplatin in the resistant cell lines by inhibiting MRP1 and P-gp transporters

6th International Electronic Conference on Medicinal Chemistry

1-30 November 2020

Acknowledgements

CQE is funded by Fundação para a Ciência e Tecnologia (FCT) – UIDB/00100/2020. Financial support was also provided by FCT through PTDC/QUI-QIN/28662/2017, Lead4Target; A. Valente acknowledges CEEC-IND/01974/2017 (acknowledging FCT, as well as POPH and FSE – European Social Fund). R.G. Teixeira thanks FCT for his Ph.D. Grant (SFRH/BD/135830/2018).

References

sponsored:

[1] Garcia et al., Future Medicinal Chemistry, 2016, 8(5), 527–544.

Lead4Target

pharmaceuticals