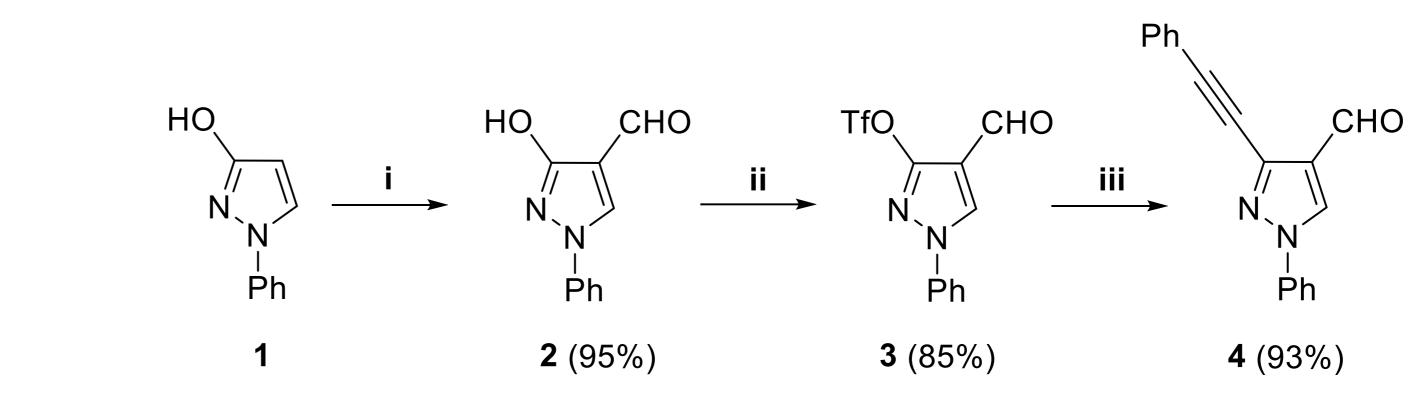
NEW 2*H*-PYRAZOLO[4,3-*c*]PYRIDINES: SYNTHESIS, OPTICAL PROPERTIES AND ELUCIDATION OF ANTI-CANCER ACTIVITY

Palacký University

<u>Beatričė Razmienė (1,2),</u> Eva Řezníčková (3), Vaida Dambrauskienė (2), Eglė Arbačiauskienė (2), Martin Kubala (4), Asta Žukauskaitė (3), Vladimir Kryštof (3), Algirdas Šačkus (1,2)

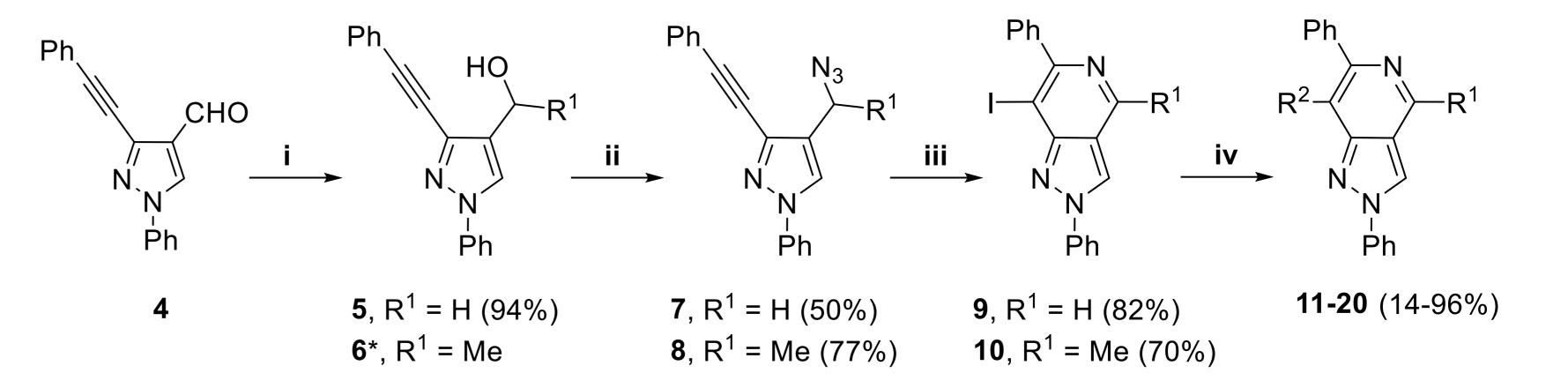

- 1) Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
- 2) Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254, Kaunas, Lithuania
- 3) Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic

4) Department of Experimental Physics, Faculty of Science, Palacký University, 17. Listopadu 12, CZ-77146 Olomouc, Czech Republic

Introduction

Pyrazole is a common structural unit in many pharmaceuticals and a central axis of numerous ongoing

Synthesis of 1-phenyl-3-(2-phenylethynyl)-1*H*-pyrazole-4-carbaldehyde



studies devoted to the synthesis and biological evaluation of novel pyrazole moiety-bearing molecules. Annelated pyrazoles are of particular interest as they constitute the core of several well-known drugs, including Sildenafil, Zaleplon and Allopurinol. Among the vast variety of up to now developed biologically active annelated pyrazole derivatives, synthetically demanding 2H-pyrazolo[4,3c]pyridines are, however, relatively understudied. Thus, the aim of this work was to synthesize and evaluate the biological acitivity of novel 2H-pyrazolo[4,3-c]pyridine derivatives.

1-phenyl-3-(2-phenylethynyl)-1*H*-pyrazole-4-Firstly, carbaldehyde was prepared from 1-phenyl-1*H*-pyrazol-3ol by consecutive alkylation, formylation and Sonogashira cross-coupling reactions (scheme 1). Then the pyrazolo[4,3-*c*]pyridine core was obtained *via* a three step route (scheme 2). Firstly, carbaldehyde 4 was converted to alcohols 5 and 6 using either Gringnard reagent or reduction conditions and then transformed into azide-alkynes 7 and 8. The latter were used in electrophilic cyclization reaction to obtain 7-iodo-2,6diphenyl-2*H*-pyrazolo[4,3-c]pyridines 9 and 10. The library of 2,4,6,7-tetrasubstituted-2*H*-pyrazolo[4,3c]pyridine derivatives was obtained via palladium catalysed Suzuki-Miyaura cross-coupling reactions. The newly synthesized compounds were evaluated for their cytotoxicity against two human cancer cell lines: K562 (chronic myeloid leukemia cells) and MCF-7 (breast cancer cells). In general, most tested compounds exhibited moderate cytotoxicity, with GI_{50} values in the micromolar range (table 1). The optical properties of new derivatives were also assessed in THF solutions (table 2).

Scheme 1. *Reagents*: i: (a) NaH, BnCl; (b) POCl₃, DMF; (c) TFA, toluene. ii: Tf_2O , TEA. iii: Phenylacetylene, TEA, CuI, Pd(PPh₃)₂Cl₂.

Synthesis of 2,4,6,7-tetrasubstituted-2*H*-pyrazolo[4,3-*c*]pyridines

Scheme 2. *Reagents:* i: MeMgBr (for 6) or NaBH₄ (for 5); ii: TMSN₃, BF₃·Et₂O; iii: NaHCO₃, I₂ (for 10) or K₃PO₄, I₂ (for 9); iv: R²B(OH)₂, Pd(OAc)₂, Cs₂CO₃. *compound 6 was used in the next step without further purification.

Optical properties

Compound	Emision λ_{em} (nm) ($\lambda_{ex 350nm}$)	Stokes shift (nm)	Quantum yield Φ_f (%)	
11	442	130	18.91	
12	461	151	71.77	
13	437	126	53.21	
14	447	136	26.15	
15	478	167	56.84	
16	449	138	17.65	
17	466	117	72.21	
18	450	140	48.67	
19	449	139	30.03	
20	481	125	62.84	

Biological Activity

GI ₅₀ , μΜ	Ph N R N N Ph	$Ph \qquad N \qquad R$	Ph N N N Ph R	$Ph \qquad N \qquad R$	$\begin{array}{c} Ph \\ N \\ N \\ N \\ Ph \end{array}$
	11	12	13	14	15
K562	>50	17	41	>100	8,6
MCF-7	>50	18	89	>100	18.2
R=Me					

	16	17	18	19	20
K562	10.2	2,3	4	4,5	3,9
MCF-7	>12.5	>12.5	17.5	17.5	9.4
R=H					

Table 1. *In vitro* citotoxicity of 2,4,6,7-tetrasubstituted-2*H*-pyrazolo[4,3-*c*]pyridines against breast carcinoma MCF-7 and leukemia K562 cell lines.

Table 2. Fluorescence parameters in THF.

Acknowledgements

This work was supported by the Research Council of Lithuania (LMTLT), agreement No S-MIP-20-60.

6th International Electronic Conference on Medicinal Chemistry

1-30 November 2020

