

6th International Electronic Conference on Medicinal Chemistry

1-30 November 2020 sciforum.net/conference/ECMC2020

sponsored by
pharmaceuticals

Development of water-soluble ternary system for enhancing biological activities of mefenamic acid

Dounia Sid^{1,2}, Milad Baitiche^{1,*}, Zineb Elbahri³, Ferhat Djerboua¹, Mokhtar Boutahala⁴ and Marc Le Borgne^{2,5,*}

¹Laboratoire de Préparation, Modification et Applications des Matériaux Polymériques Multiphasiques, Département de Génie des Procédés, Faculté de Technologie, Université Ferhat Abbas Sétif-1, Boulevard du Sipion, Sétif 19000, Algérie; ² EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, 69373, France; ³ Laboratory of Materials and Catalysis, Faculty of Exact Sciences, Djillali Liabès University of Sidi Bel Abbès, 22000 Algeria; ⁴ Laboratoire de Génie des Procédés Chimiques, Département de Génie des Procédés, Faculté de Technologie, Université Ferhat Abbas Sétif-1, Boulevard du Sipion, Sétif 19000, Algérie; ⁵Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, 69373, France

Development of water-soluble ternary system for enhancing biological activities of mefenamic acid

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

pharmaceuticals

MDPI

sponsored:

Abstract:

The aim of this work is to investigate the solubility enhancement of mefenamic acid (MA), a non-steroidal anti-inflammatory agent, by formation of stable amorphous ternary system (MA, polyvinylpyrrolidone (PVP), β -cyclodextrin (β -CD)) compared to the binary system (MA, β -CD). Firstly, on the basis of the molecular docking simulation and job's plot results, three methods were adopted for the preparation of the binary inclusion complexes at the ratio of 2:1 of MA: β -CD, namely solvent co-evaporation (CE), kneading (KN) and physical mixture (PM). However, in order to decrease tendency to self-assembly of cyclodextrins and form aggregates in aqueous media, each binary system was co-milled at ambient temperature in presence of different ratios of a highly water-soluble polymer (PVP). These complexes were characterized using Fouriertransform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), nuclear magnetic resonance (¹H- and ¹³C-NMR) spectroscopy and scanning electron microscopy (SEM) techniques. The release of the drug from the diverse formulations was also investigated by means of UV-VIS spectroscopy. Finally anti-inflammatory and anti-nociceptive activities were performed. The results showed that the solubility of MA in water from ternary complexes was significantly improved.

Keywords: Mefenamic acid; β-cyclodextrin; polyvinylpyrrolidone; solubility; *in vivo*.

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

pharmaceuticals

Introduction

- ✓ Physicochemical properties and ADME (Absorption, Distribution, Metabolism, Elimination) parameters of a drug substance are essential to ensure the accessibility to its target(s).
- ✓ Only the free part of the drug substance diffuses in tissues from the blood and then can access to the active binding site of the desired target.
- Among all parameters to control for a successful treatment, an acceptable level of drug substance solubility is required.
- In the case of low solubility drug substances, inclusion complexes with β-CD can be an interesting alternative to facilitate drug administration.
- ✓ To increase complexation and to optimize solubilization, addition of small quantities of a suitable hydrophilic polymer to a drug:β-CD system is very favorable.

Introduction

- ✓ Mefenamic acid (MA) and its physicochemistry
- ✓ 2-[(2,3-dimethylphenyl)amino]benzoic acid.
- ✓ A potent non-steroidal antiinflammatory drug (NSAID).

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDPI

Results and discussion – Determination of complex stoichiometry

Continuous variation plot (Job's plot)

- ✓ β-CD formed A_N-subtype complexes with MA. This fact implies that β-CD is proportionally less effective at higher concentrations.
- The maximum Δ_{Abs} variation was observed at mole fraction value of 0.67. This suggests a 2:1 stochiometric ratio of MA:β-CD.

sponsored:

Results and discussion – In silico molecular modeling studies

ΔG values in Kcal.mol ⁻¹								
Ratio (MA:β- CD)	Bindª	Docking score	Glide Lipo ^b	Glide vdw ^c	Glide Hbond ^d	Glide Emodel		
1:1 (IC2)	-21.468	-4.575	-2.179	-21.123	-0.042	-26.612		
2:1 (IC1)	-37.698	-7.890	-3.454	-37.387	-0.202	-46.262		
1:2 (IC3)	-35.995	-7.375	-3.139	-28.990	-0.160	-50.976		

^a free energy of binding (Glide energy); ^b free energy of binding from lipophilic binding;^c free energy of binding from van der Waals energy; ^d free energy of binding from hydrogen bonding.

- IC1 (2:1) MA:β-CD is the most stable complex (highest docking score and glide energy).
- ✓ Contribution of Van der
 Waals is the most important.

 Introduction of a second MA molecule in the primary complex enhances the stability (further hydrogen electrostatic interaction and improved filling of the β-CD cavity)

sponsored: MDPI

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

7

Results and discussion – *In silico molecular modeling studies*

Results and discussion – Preparation of solid complexes and loading

 According to job's plot results and the molecular docking observations, (2:1) MA:β-CD complexes were prepared by three methods Physical mixture (PM)

Kneading (KN)

Co-evaporation (CE)

Complex	CE
Experimental yield (%)	90.1
Drug content (%)	28.96 ± 0.39
Experimental molar ratio	1.9:1
MA:β-CD	

With an experimental loading value of 28.96%, the ratio of (2:1) MA:β-CD complex was also confirmed.

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDPI first pharmaceuticals

9

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

10

pharmaceuticals

MDPI

sponsored:

MDPI

sponsored:

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

11

- ✓ The presence of the endothermic peaks of the two individual components at their corresponding temperatures indicates the absence of chemical interaction between them.
- The thermogram of binary inclusion complexes illustrates the characteristic endothermic peak of the drug with reduced sharpness and intensity as compared to the pure drug, indicating an incomplete inclusion of the drug in the β-CD cavity.

sponsored: MDPI

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Results and discussion – Characterization of the ingredients and

their complexes

¹H NMR

MA Protons	δ _{guest}	CIS (CE)	CIS (KN)	CIS (PM)
H-1	12.98	-2.23	-	0
H-2	9.45	1.30	0.72	0
H-3	7.89	0	0	0
H-4	7.31	-0.18	-0.09	0
H-5	7.12	-0.10	0.01	0
H-6	7.03	-0.21	0.05	0
H-7	6.72	-0.09	-0.05	0
H-8	6.70	-0.09	-0.05	0
H-9	6.68	-0.08	-0.05	0
H-10	2.29	-0.03	-0.01	0
H-11	2.10	0.01	0.01	0

- ✓ ¹H NMR Chemical shifts for CH protons of MA alone (δ_{guest}) and their complexation induced shifts (CIS = $\delta_{complex}$ – δ_{guest}) in DMSO- d_6 at 25 °C.
- ✓ The OH and NH functions of guest participate in the formation of the inclusion complex leading to a more stable complex (CE).

sponsored: MDPI

Results and discussion – Characterization of the ingredients and

their complexes

¹³C NMR

MA Carbons	$\boldsymbol{\delta}_{guest}$	CIS (CE)	CIS (KN)	CIS (PM)
C-1	170.66	-	0.34	0
C-2	149.22	-2.2	-1.43	-0.02
C-3	138.81	1.4	0.57	0
C-4	138.35	-0.93	-0.72	0
C-5	134.66	-2.76	-2.22	0
C-6	132.17	-1.16	-0.35	0
C-7	131.71	-2.64	-1.68	-0.02
C-8	129.89	-1.26	-1.08	-0.01
C-9	126.49	-2.22	-1.28	0.01
C-10	122.66	-	-2.31	-0.02
C-11	116.71	2.16	-0.6	0.01
C-12	113.55	2.43	-0.62	-0.01
C-13	111.69	1.11	-	-0.03
C-14	14.14	-0.45	-0.45	0
C-15	20.69	-0.31	-0.38	0.01

- ✓ ¹³C NMR Chemical shifts for carbons of MA alone (δ_{guest}) and their complexation induced shifts (CIS = $\delta_{complex} - \delta_{guest}$) in DMSO- d_6 at 25 °C.
- ✓ All the carbon atoms of MA show an upshift, the maximum corresponds to C1 of guest which confirms that C=O is involved in the interaction.
- ✓ By CE method, the most stable complex is obtained.

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDPI pharmaceuticals

- \checkmark MA crystals are adhered to smooth surface of β-CD (in PM).
- \checkmark In KN complex, a reduction in the agglomerated drug on the surface of β-CD is observed.
- \checkmark In CE complex, the crystal nature of MA disappeared. Micrographs show small, more agglomerated, and amorphous smooth structures, which suggest that MA is well dispersed in the β-CD cavities.

Results and discussion – In vitro drug release test

✓ The improved MA dissolution characteristics of the PM complex may be explained by the drug wettability enhancement.

 The greater enhancement of MA dissolution in KN and CE complexes is due to partial trapping of the drug in β-CD verified by molecular modeling, FTIR, DSC, XRPD and SEM.

sponsored: MDPI

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Results and discussion – *Mathematical models of drug release kinetics*

MA:β-CD	First order		Higuchi			Kosmeyer-Peppas		
	R ²	K ₁ (min⁻¹)	R ²	K _H x100 (min ^{-1/2})	а	R ²	K _{KP}	n
PM	0.6553	0.0022	0.8363	1.2367	31.7150	0.9424	3.5851	0.0997
KN	0.9113	0.0054	0.9934	4.6504	32.2330	0.9784	3.4922	0.2154
CE	0.7551	0.0090	0.9688	7.4297	14.7730	0.9832	6.8865	0.3980

✓ CE formulation presented a higher value of K_H which indicated the complex formation and the enhancement of drug dissolution compared to other formulations.

✓ The exponent (n) of the Korsmeyer–Peppas model indicated that the drug release is related to a quasi-Fickian diffusion (n < 0.5).</p>

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Results and discussion – *Preparation of ternary inclusion complexes* (TIC)

 ✓ Each binary system was co-milled at ambient temperature in presence of different ratios of a highly water-soluble polymer (PVP).

pharmaceuticals

Results and discussion – In vitro release of MA from ternary inclusion complexes

% of PVP	2%			5%			10%		
TIC	F1(PM)	F2(KN)	F3(CE)	F4(PM)	F5(KN)	F6(CE)	F7(PM)	F8(KN)	F9(CE)
Time	120 min	120 min	120 min	90 min	30 min	20 min	120 min	120 min	90 min
% of drug release	50	90	99	100	100	100	60	92	99

- The CE method is the most appropriate method to get improved MA dissolution properties of (2:1) MA:β-CD binary complex.
- ✓ The add of 5% of PVP to the CE binary system (F6), the dissolution of MA was significantly improved. This ternary inclusion complex constitutes the best dosage form.

pharmaceuticals

Results and discussion – In vivo evaluation

- ✓ To assess the *in vivo* antiinflammatory effectiveness of the formulations (CE and F6) in comparison with the pure drug, Carrageenaninduced rat paw edema test was used.
- ✓ The strongest inhibitory effect on the total edema response was observed for F6.
- Acetic acid-induced writhing test was uses to evaluate the analgesic activity of the formulations (CE and F6) in comparison with the pure drug.
- ✓ The treatment with ternary inclusion complex (F6) by oral administration remove writhing and enhancing the anti-nociceptive effect.

MDPI

sponsored:

Conclusions

- Phase solubility diagram and job's plot experiment were used to determine the stoichiometry of the MA:β-CD complex. Molecular modeling approach helps to select the most stable inclusion complex (2:1).
- Inclusion complexes of MA:β-CD in the 2:1 molar ratio were prepared using PM, KN and CE methods.
- Characterization of BIC showed no evidence of chemical reactions between MA and β-CD.
- ✓ Add of 5% of PVP to the CE binary inclusion complex exhibited the highest enhancement in MA dissolution properties.
- Ternary inclusion complex (F6) constitutes the best dosage form. In vivo antiinflammatory and analgesic assays confirmed the therapeutic benefits of MA when its solubility is improved.

sponsored: MDPI

Acknowledgments

The authors are very grateful to "Ministère de l'Enseignement Supérieur et de la Recherche Scientifique de l'Algérie" as well as University of Ferhat Abbas Sétif 1 for the funding and the support of the project.

Our thanks go to SALEM Pharmaceutical Laboratories headed by Dr. A. Maiza for the supply of the different chemicals used in this study.

Pr. M. Boutahala is gratefully acknowledged for the provision of the equipments used in the analyses as well as the laboratory facilities.

