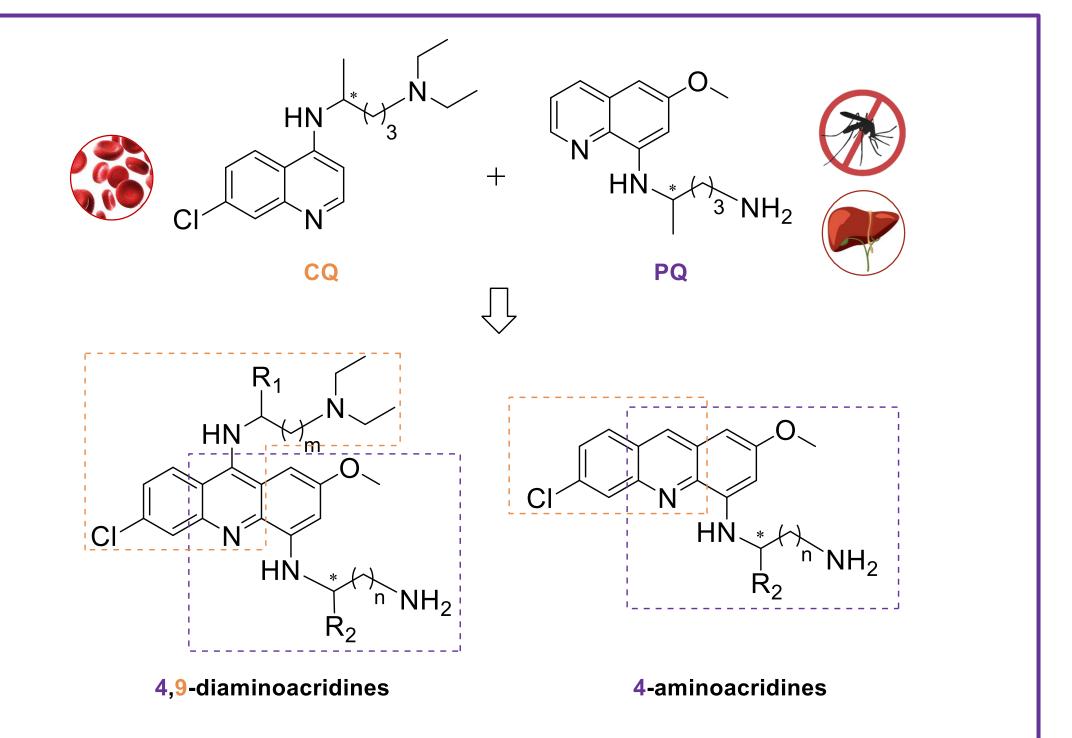
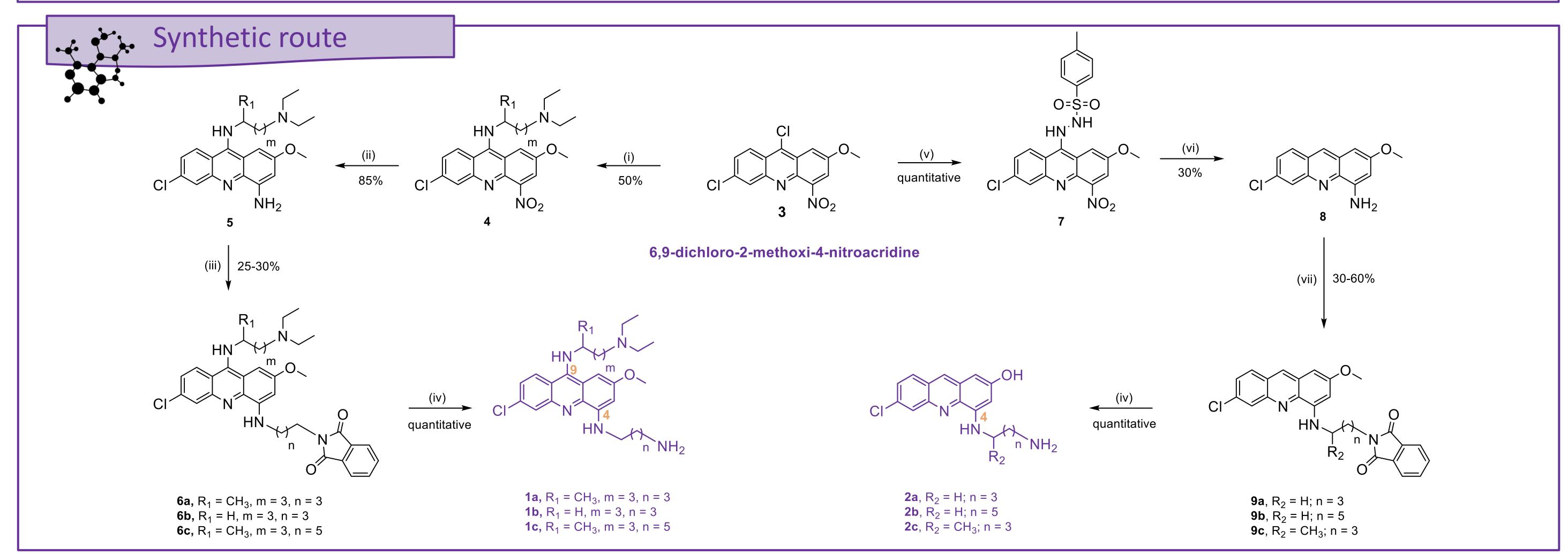
4,9-diaminoacridines and 4-aminoacridines as antiplasmodial dual-stage hits

<u>Mélanie Fonte</u>, [a],* Natália Tassi, [a] Diana Fontinha, [b] Inés Bouzón-Arnáiz, [c], [d] Ricardo Ferraz, [a], [e] Maria J. Araújo, [a] Xavier Fernàndez-Busquets, [c], [d], [f] Miguel Prudêncio, [b] Paula Gomes, [a] Cátia Teixeira [a]


a) LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal; b) Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal; c) Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Spain; d) Barcelona Institute for Global Health (ISGlobal), Barcelona Center for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Spain; e) Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Politécnico do Porto, Portugal; f) Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Spain


*melanie.fonte@fc.up.pt

Aim

Malaria is one of the <u>deadliest infectious</u> diseases in the world. The eradication of malaria has not yet been achieved, mainly due to the emergence of resistant parasites. Therefore, **multi-target drugs** have being prioritized in antimalarial drug discovery, as targeting more than one process in the Plasmodium life cycle is likely to **increase efficiency**, while **decreasing** the chances of emergence of **resistance** by the parasite.^[1] In this sense, and keeping in mind that the one cost-effective strategy is to repurpose existing drugs for malaria, or to rescue antimalarial pharmacophores,^[1] we reported the synthesis and in vitro evaluation of two novels acridines families (**4,9-diaminoacridines** and **4-aminoacridines**) though the combination of primaquine (**PQ**) and chloroquine (**CQ**), two well-known antimalarial drugs with activities in different stages of the parasite life cycle,^[2] hence acting as dual-stage antiplasmodial hits.

	In vitro results												
Compound	IC ₅₀ (μM) blood-stage		IC ₅₀ (μM) liver-stage										
Compound	<i>Pf</i> 3D7	Pf W2											
5a	0.45 ± 0.22	0.49 ± 0.24	ND*	200 —	■ Infection • Confluency 200								
6a	0.16 ± 0.22	0.98 ± 0.24	ND	_								_	_
1a	0.68 ± 0.24	6.17 ± 0.23	11.02 ± 0.44	<u>5</u> 150									150 (lo
1b	0.44 ± 0.21	0.66 ± 0.25	ND	of con			I				Ţ	I	of co
1c	0.26 ± 0.35	0.49 ± 0.23	ND	≥ 100	<u> </u>	<u>+</u> _ <u>I</u>	•	• •		<u> </u>	1		100 🖔
2 a	5.64 ± 0.22	5.14 ± 0.23	2.22 ± 0.51	fection 20	•		<u>.T.</u>	¥		I			50 Jilnen
2b	>10	4.17 ± 0.23	1.64 ± 0.30	a 50 —					Ŧ				
2c	>10	2.39 ± 0.24	2.04 ± 0.38	0	<u> </u>								0 <u>a</u>
CQ	0.02	0.23	Li		1µM .0µM	1µМ .0µМ	1 µM 0 µM	1 µM 0 µM	1µМ .0µМ	1 µM 0 µM	1µМ .0µМ	1 µM 0 µM	
PQ	_	-	7.5		5a at 5a at 1	6a at ia at 1	1a at a at 10	1b at 1	1c at Ic at 1	2a at 3	2b at 2b at 1	cat at 1	
			*ND – Not determined		ம	9	H	\ \ \ \ \	\leftarrow	5	7	2 2c	

Conclusions

- Synthesized compounds retained the activity of the parent compounds, which makes them potential antimalarial dual-stage hits;
- Activity is dependent of the nature and length of side chain introduced in position 4 and 9 of the acridine ring;

References: [1] Teixeira, C. et al. Chem Rev. **2014**, *114*, 11164-11220; [2] Fonte, M. et al. Tetrahedron Lett., **2019**, *60*, 1166-1169.

Acknowledgement: This work was developed within the scope of projects UIDB/50006/2020 and PTDC/BTM-SAL/29786/2017, financed by national funds through the Fundação para a Ciência e Tecnologia (FCT). MF thanks the FCT for the doctoral grant SFRH/BD/147345/2019.

