Effect of cytostatic substances on zebrafish embryos

Ana Aires¹,*, Diana Moreira¹, Maria de Lourdes Pereira², Miguel Oliveira³

¹ Department of Chemistry, University of Aveiro, 3810-193 Aveiro
² CICECO- Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
³ CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal

* Corresponding author: anafga97@ua.pt
Effects of cytostatics substances on zebrafish embryos

Graphical Abstract

Methotrexate (0.1-1000 µg.L\(^{-1}\))
5-Fluorouracil (0.1-1000 µg.L\(^{-1}\))
Mixture (MTX+5-FU) (10-1000 µg.L\(^{-1}\))

Development

Behaviour

Biochemical markers
Abstract

Cancer is one of the top causes of death in humans. The currently available treatments, that depend on the type of cancer, may include cytostatic drugs. Methotrexate (MTX) and 5-Fluorouracil (5-FU) are cytostatic drugs and they have been used for chemotherapeutic treatment. Due to their nature, their presence in water systems, even in low concentrations, is of particular interest due to the potential risks to non target organisms and humans, through consumption of contaminated items like drinking water. However, knowledge of its impact to aquatic organisms is limited. Thus, this study aimed to evaluate the effects of MTX (0.01 up to 1000 μg.L⁻¹), 5-FU (0.01 up to 1000 μg.L⁻¹) and its mixture (10 up to 1000 μg.L⁻¹) on zebrafish (Danio rerio) focusing on different endpoints, such as fish development (Fish Embryo Toxicity (FET) assay and heartbeat rate), behaviour (light/dark stimulus) and biochemical endpoints associated with neurotransmission (AChE), antioxidant defences (CAT and GST) and metabolism pathways (LDH). Overall, zebrafish embryos demonstrated sensitivity in all tests. Exposure to MTX promoted increased heartbeat rate and swimming behaviour (between 0.01-100 μg.L⁻¹), however a decreased was observed at the highest concentration (1000 μg.L⁻¹). Our findings demonstrate that MTX and 5-FU use similar pathways both in humans and zebrafish, once MTX induced disruption in the heartbeat and behaviour and 5-FU induced disruption in behaviour. The mixture of compounds demonstrated an increase impact in the tested parameters.

Keywords: behaviour; biochemical endpoints, cytostatic, Danio rerio, development
Cytostatic drugs

- Group of chemotherapy substances with mechanisms of action;
- Mechanism of action help to prevent tumor cell growth and division by interfering in the genetic material of the cells and cell signaling;
- The use of these drugs increased, being excreted by urine and feces from outpatients leading to its detection in the environment.
Fate in the environment
Methotrexate

- It is the first antagonist of folic acid development for the treatment of malignancies;
- It is hydrophilic molecule and can only enter the cell through active transport process.
- It inhibits the synthesis of DNA, RNA, thymidylates and proteins.
5-Fluorouracil

- It is an active antineoplastic agent and is the most widely used chemotherapeutic agent in the world;

- In the environment water samples, 5-FU may be efficiently removed by photolysis and leading to a low concentration in environment.
Tests

- Biomarkers
- FET and Heartbeat rate
- Swimming behaviour
Biomarkers

- Biomarkers are molecular, physiological, biochemical and behavioral responses indicating modifications in the biological system due to a potential hazard.

FET

- FET consists in the exposure of newly fertilized zebrafish embryos to a test chemical for a total of 96h.
Zebrafish

- It is a tropical freshwater fish belonging to the family Cyprinidae;
- It has been used as a model in development biology and molecular genetics;
- It is distinguished by numerous advantages.
Results: Methotrexate

Fish Embryo Toxicity

[MTX]=1 µg.L\(^{-1}\)

[MTX]=100 µg.L\(^{-1}\)

[MTX]=10 µg.L\(^{-1}\)

[MTX]=10 µg.L\(^{-1}\)
Results: Methotrexate

Heartbeat rate

![Heartbeat rate graph showing MTX Concentration (µg.L⁻¹) vs Heart rate (beats/min). The graph indicates a consistent baseline heart rate across different MTX concentrations with no significant changes marked by asterisks (*)]
Results: Methotrexate

Swimming behaviour

Slow/inactivity movements

Medium movements

Rapid movements

Results: Methotrexate

Swimming behaviour

- **Slow/inactivity movements**
- **Medium movements**
- **Rapid movements**

6th International Electronic Conference on Medicinal Chemistry

1-30 November 2020

Sponsored by: MDPI pharmaceuticals
Results: Methotrexate

Swimming behaviour

- Total time
- Total distance
- % Time out
- % Distance out

MTX Concentration (µg/L)
Results: 5-Fluorouracil

Fish Embryo Toxicity

- **[5-FU]=0.01 µg.L\(^{-1}\)**
- **[5-FU]=0.1 µg.L\(^{-1}\)**
- **[5-FU]=1 µg.L\(^{-1}\)**
- **[5-FU]=1000 µg.L\(^{-1}\)**
Results: 5-Fluorouracil

Heartbeat rate

![Heartbeat rate graph](image)

- 5-FU Concentration (μg.L⁻¹)
- Heart rate (beats/min)
Results: 5-Fluorouracil

Swimming behaviour

Slow/inactivity movements

Medium movements

Rapid movements

6th International Electronic Conference on Medicinal Chemistry
1-30 November 2020
Results: 5-Fluorouracil

Swimming behaviour

- Total time
- % Time out
- Total distance
- % Distance out

Graphs showing the effect of 5-FU concentration on swimming behaviour.
Results: Mixture (MTX+5-FU)

Fish Embryo Toxicity

- [Mix]=100 µg.L\(^{-1}\)
- [Mix]=10 µg.L\(^{-1}\)

- Malformation
- Edema
- Deformation
Results: Mixture (MTX+5-FU)

Heartbeat rate

![Heartbeat rate graph](image-url)
Results: Mixture (MTX+5-FU)

Swimming behaviour

- Slow/inactivity movements
- Medium movements
- Rapid movements
Results: Mixture (MTX+5-FU)

Swimming behaviour

- Total time
- Total distance
- % Time out
- % Distance out

(Results shown in graphs with concentration levels on the x-axis and various measurements on the y-axis.)
Discussion

• The tested substances demonstrated ability to impact fish development, heartbeat and swimming performance.

• Comparing the obtained data, based on the assessed endpoints, 5-FU appears as more dangerous to fish, as effects were observed at lower concentrations.

• The combined exposure, in general induced less effects, as can be observed for example in heartbeat. Data suggests potential antagonistic effects.
Conclusion

The obtained results in swimming behaviour and heartbeat rate have the same pattern demonstrating that MTX and 5-FU uses similar pathways in humans and zebrafish, once both induced disruption in the behaviour and heartbeat.

Data shows the need to perform long term studies to assess the effects of chronic exposure.
Thank you for your attention!!!

Thanks are due to FCT/MCTES for the financial support to CESAM (UID/AMB/50017/2019), through national funds. MO had financial support of the program Investigador FCT, co-funded by the Human Potential Operational Programme and European Social Fund (IF/00335-2015).