

6th International Electronic Conference on Medicinal Chemistry

1-30 November 2020 sciforum.net/conference/ECMC2020

sponsored by
pharmaceuticals

In *silico* design, synthesis and evaluation of MurD and MurE ligase inhibitors as antibacterial agents

Niladri Saha ^{1,*}, Dr. Md. Afzal Azam²

 ¹ Research Scholar, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty ;
 ² Head and Professor, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty .

* Corresponding author: niladri9007@gmail.com

Dual Inhibition of MurD and MurE: A strategy for Anti-resistant Antibiotics Development

Graphical Abstract

Cytoplasm

sponsored: MDP

Abstract:

Bacterial resistance is one of the biggest threat to health community, especially hospital acquired MRSA. There are various mechanisms are involved in bacterial resistance out of which, the penetration of cell wall and the mutation of target receptor are the most important. From the beginning, the later stage of Peptidoglycan synthesis has been targeted which occurs outside the cytoplasm. The early stage of peptidoglycan synthesis has never been exploited. Inside the cytoplasm a group of enzyme known as Mur enzymes having similar mechanism of action using ATP, act consecutively and the active residues for all the enzymes are conserved. These make them ideal for multi-target. The MurD involve in adding the D-glu amino acid whereas MurE involve for L-Lys/m-DAP amino acid addition. The MurE act as a gatekeeper for gram-positive and gram-negative bacteria. The product of the previous enzyme act as a substrate for the next one. By designing similar chemical nature to the MurD product, will be having the dual affinity. But the major drawback of these inhibitors are penetration. The IC_{50} values and the MIC values have not correlated for most of the inhibitors. The current work is focused on this problem and we have designed some novel scaffold using various drug designing tools to get the desired hits. The MIC values and time kill studies of the synthesized compound has been carried out against MRSA (ATCC-43300). All the MICs were within $\mu g/ml$ and better time-kill studies shown against the standard drug ciprofloxacin. These hits can optimized further to get the desired lead.

sponsored:

pharmaceuticals

Keywords: MRSA; MurD; MurE.

Introduction

Antibiotics approved by the U.S. Food and Drug Administration (FDA) Jan- 2010 to Dec 2017 were

- Ceftaroline
- Fidaxomicin
- Bedaquiline
- Dalbavancin
- Tedizolid
- Ceftolozane-tazobactam
- Ceftazidime-avibactam
- Meropenam
- Delafloxacin

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MI

Literature survey (MurD)

Literature survey (MurE)

E. coli MurD (IC₅₀ **690** μ M) and MurE (IC₅₀ **89** μ M)

E.coli MurE(IC₅₀ **330** μM)

HO

E. coli MurD (IC₅₀ **270** μ M) and MurE (IC₅₀ **32** μ M)

E. coli MurD (IC₅₀ **206** μ M) and MurE (IC₅₀ **494** μ M)

E.coli MurE(IC₅₀ **61** μ M)

HO

S. aureus MurD (IC_{50} 6.4 μM)and MurE (IC_{50} 17 μM) and E. coli MurD (IC_{50} 8.2μM) and MurE (IC_{50} 180 μM)

HO

HO

O N=O

E. coli MurD (IC₅₀ **148** μ M) and MurE (IC₅₀ **16** μ M)

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MI

E.coli MurE(IC₅₀ **330** μM)

Domain representation in the 3D-crystal structure of MurD and MurE Ligase enzyme

N-Terminal Domain: 1-99
UMA

Central Domain: 100-304 ATP C-Terminal Domain: 305-449 Incoming amino-acid

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDPI

sponsored: MDPI

Why MurD and MurE ?

- Both MurD & MurE enzymes are present only in bacteria with high specificity towards their amino acid and also no structural homology with mammalian enzymes.
- All Mur ligases presumably act through an analogous sequential enzymatic mechanism, as corroborated by structural, biochemical and computational studies.
- The binding site residues of both the enzymes are conserved for different bacterial species.
- As both MurD & MurE are consecutive enzymes with similar catalytic mechanism and binds to the substrate having same structural features.
- This leads our attention to design a ligand which will act as analog of MurD product and MurE substrate.
- As MurE plays a decisive role in cell wall synthesis which differentiate gram positive and gram negative bacteria. So, inhibitors of this enzyme will inhibit cell wall synthesis for both gram positive and gram negative bacteria.

pharmaceuticals

sponsored: MDF

Aim

• To design molecules having similar nature to the product of the MurD enzyme which then act as a substrate for MurE, which posses the dual affinity.

• The closed form of the enzyme structure, which is bound with the product has been used for the HTVS and designing.

sponsored: MDPI

pharmaceuticals

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Homology modeling of *S. aureus* MurD enzyme using uniprot Fasta sequence (accession code: Q6GHQ2)

. In compariso	hand and have			1			duulu											
ablőeceőős M	MLNYTGLENKNUL	AKS AKS	YEAAKLLS	KLGANVT N	GKDLSQDAH	AKALE	SMGISVVS	SHPLTL DI	NPI KNP	PYTVSII	DEVKROLK	LTEVE SYLI	ISEAPLIAVIOINSET	T TSLIGDEF	KESRLTGRLS	GYVASKVAQE	VKPTDYL	LGIEKYKPHI
ears_a		1100011	LOCYDITE	AR VIER ST	TRPITPP	GEN NL	PERVERSI	an na car car car	und a service	A CARPOL	SWIMPAD I L	VODI CK	CAMPER AND MODEL		Norananananananananananananananananananan			DI ISSUAVA
sp Q6G8Q2 M	TNIYSARL -	HENCEN	ONAKKOLY	KNOTEEDYLI	CNYHOROWI	ESEEL	KAKTLYFS	TQQE D-GI	IX.	GFIVY	VRIINTED	LVEPGENNLE	ENILARVLACILARV	IKAIIDS	SCIENRLOY	INRINKYYN	ATNTLATOF	NSFNOPIIMCC
2 XPC_A	TLNVTED	PFG	RA <mark>A</mark> XLŘ <mark>I</mark> Y	E <mark>N</mark> ÄKV	n <mark>e</mark> v n	NADDA	LTMPIRGA	DÊRC <mark>Y</mark> SP <mark>O</mark> VI	MG <mark>D</mark> YHLNH	QQGETWLRV	K <mark>o</mark> ekvlnvke	INK <mark>I</mark> S <mark>oqhn</mark> yt	FNALAALALADA <mark>AG</mark> L <mark>P</mark>	RASSLKALTT	T T <mark>C</mark> LP HR FEV T L	EHNGVRWI <mark>nd</mark> s	KATNVGSTËA	LNGLHVDGTLHL L
le comen las	Levelevelee			.1													ll.	
ablőeceős a	GLORGNE DE IP	T NCDAR	AMVV OUT	COLUMN SN	QGKSVIEAN DEVAROTE	THE	VDKVQDIII MDT.T.ADDIN		A SWOT	ST ERGEN	BRIAFFICE	SY						
6AFV_A	USPORT OF AR	C LEVOLATI	- 01.0 00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- NE DAMOŽI DI	an <mark>e</mark> (TIRDUAL BY			NOT COMPANY	APPAPERSO	10						
Find Homolog	e Consult for	and faction		nan hamala	as then colo				tomolotori	las etc.etc.	hulden							Tab. Antiana
Find Homolog	s - Search for	and/or im	port seque	ince homolo	gs, then sele	ect the	se you wisi	n to use as	templates	or structure	e building.							Job Options
BLAST Homolo	gy Search Optio	ons Im	port: From	n File Fro	m Project Ta	ble												
Identify Global	h Conserved Resi	idues Ear	miki nama-															
identity orobai	ly conserved ries	iuues rai	mily name:															
Homologs: (20	9 found, 1 select	(ed)																
ID Name		Score	Expect	Identities	Positives	Gaps	Pfam	Title	Compound	Source	Experiment	Resolution	Ligands/Cofactors	Warning				
2X50 A 91 30	6991519 pdb	448.0	3.10.50	305	51%	75	Mur lina.	DISCOVERY	LIGASE	ESCHERTC.	X-RAY	1.45	VSV (N-({3-[({4-					
2X50	A Chain A, Dis_		0180.00				uni-erder	OF NOVEL.	EC: 6.3	E OF OF REF OR ON	DIFFRACTI_	*	[(Z)-(2,4-DIOXO					
2VPC A 91 333	3360998 pdb	449.0	3 10.50	305	518	75	Mur line	SECOND-	LIGASE	ESCHERTC	X-RAY	1.49	051 ((1R, 3R,					
2XPC /	A Chain A, Sec.		0.16-00	304		14	un _under	GENERATI.	EC: 6.3	E-FOREFALCO	DIFFRACTI_		4S)-4-[({6-[(4-C.					
ADIN' & MILEO	40222741 [n-fh] 4D	389.0	10-41	205	496	63												
4000_A 91 32	4922147 [heal 407			2.74	424													
480C_8 g1 52	4933742 pdb 48.	389.0	1e-41	294	49%	61												
4BUC_B gi 52 SVVW_A gi 120	4933742 pdb 48. 00169837 pdb 5.	389.0 147.0	1e-41 5.2e-10	29A 25A	49%	6% 12%												

Fig 1: Alignment of template and query sequence and the alignment score of 2XPC.

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDF

Homology modeling (MurD from *S.aureus*)

Fig 2: Protein reliability report of the homology modeled *S. aureus* MurD enzyme.

Protein Backbone

Ramachandran plot of MurE enzyme X-ray crystal structure (PDB ID- 4C13) from *S.aureus*.

Ramachandran plot of MurD enzyme (Uniprot accession code: Q6GHQ2) homology model from *S.aureus*

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDPI

Fig 3: Pictorial representation of docking pose of co-crystal molecule in the active site of **a**) MurD enzyme model **b**) MurE enzyme (4C13) **c**) Overlay of the docking conformation with the co-crystal of ligand (RMSD 0.790).

Fig 4: Hydrophillic **(Blue)** and Hdrophobic **(Brown)** surface mapping of the protien **a)** homology model of MurD and **b)** crystalographic structure of MurE (Pdb Id-4C13) *S. aureus*.

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MI

Selected Top 10 HTVS

pharmaceuticals

MDPI

sponsored:

Docking result of in silico HTVS hits (DE1-DE10)

Table 1: Docking result of the virtual hits in MurD homology (Uniprot accession code: Q6GHQ2) model active site of *S*.aureus.

Comp.	Library						е ХР
		docking	aglide	^b glide	^c glide	dglide	Lipophilic
		score	ecoul	evdw	emodel	energy	EvdW
DE1	Life chemicals F223- 0271	-6.2	-9.2	-47.2	-65.2	-48.3	-3.2
DE2	Timtec ST003236	-5.4	-7.2	-38.6	-62.4	-50.6	-3.8
DE3	Chem Div G756-	-5.1	-12.6	-36.5	-61.2	-50.3	-3.5
	0425						
DE4	Chemdiv K279-1370	-5.0	-10.5	-32.0	-60.3	-48.4	-4.8
DE5	Enamine T6806127	-5.5	-11.8	-40.1	-55.6	-55.3	-4.2
DE6	Enamine T5346963	-9.7	-14.6	-42.8	-85.1	-59.2	-3.3
DE7	Enamine T6299159	-9.9	-19.4	-50.2	-102.5	-68.2	-4.9
DE8	Enamine T6067464	-9.5	-17.7	-58.3	-93.7	-65.6	-4.3
DE9	Enamine T6520315	-9.5	-17.5	-45.6	-88.3	-68.5	-3.8
DE10	Enamine T6004991	-9.4	-16.8	-42.3	-93.5	-65.8	-4.1

^aglide Coulomb energy; ^bglide van der Waals energy; ^cglide model energy; ^dglide energy; ^eglide lipophilic contact plus phobic attractive term in the glide score.

sponsored: MDP

Table 2: Docking result of the virtual hits in the catalytic pocket of *S. aureus* MurE (PDB ID- 4C13) enzyme.

Comp.	Libery	docking score	^a glide ecoul	[⊳] glide evdw	^c glide emodel	^d glide energy	^e XP Lipophilic EvdW
DE1	Life chemicals F223-	-6.3	-16.20	-36.2	-49.2	-50.0	-3.4
	0271						
DE2	Timtec ST003236	-6.2	-15.10	-48.5	-43.2	-49.3	-3.1
DE3	Chem Div G756-0425	-7.0	-12.60	-60.0	-81.2	-63.7	-4.1
DE4	Chemdiv K279-1370	-7.2	-9.30	-59.3	-83.2	-62.5	-4.7
DE5	Enamine T6806127	-7.3	-9.80	-65.6	-89.0	-60.5	-4.5
DE6	Enamine T5346963	-5.9	-14.20	-39.2	-40.1	-54.3	-3.3
DE7	Enamine T6299159	-4.1	-11.40	-55.8	-46.3	-38.6	-2.5
DE8	Enamine T6067464	-4.8	-7.70	-42.8	-36.5	-37.2	-2.6
DE9	Enamine T6520315	-5.9	-17.20	-51.8	-53.8	-46.7	-2.7
DE10	Enamine T6004991	-5.7	-10.30	-53.5	-52.1	-48.4	-3.2

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDPI

Binding free energy calculation of in silico HTVS hits (DE1-DE10)

Table 3: Binding free energy calculation of HTVS hits by MM-GBSA approach against *S. aureus*MurD modeled protein.

Comp.	Library	ª∆G Coul	^b ∆GLipo	°ΔG Solv GB	^d ∆G vdW	^e ΔG
DE1	Life chemicals F223-0271	48.2	-19.2	-3.8	-50.0	-50.0
DE2	Timtec ST003236	35.3	-9.1	-2.8	-52.1	-58.6
DE3	Chem Div G756-0425	12.1	-11.8	-2.3	-49.5	-55.7
DE4	Chemdiv K279-1370	-5.2	-105	9.2	-53.2	-59.3
DE5	Enamine T6806127	-9.1	-17.1	-11.3	-63.8	-67.3
DE6	Enamine T5346963	-3.8	-13.1	-15.7	-66.6	-60.4
DE7	Enamine T6299159	61.1	-6.7	21.0	-69.1	-55.5
DE8	Enamine T6067464	23.6	-5.6	16.8	-68.3	-50.6
DE9	Enamine T6520315	-5.8	-5.5	-12.6	-55.2	-60.6
DE10	Enamine T6004991	-5.2	-7.1	-12.4	-60.3	-61.8

^aCoulomb energy, ^bLipophilic energy, ^celectrostatic solvation energy, ^dvan der Waal energy, ^eFree energy binding.

sponsored: MDP

Table 4: Free energy calculation by MMGBSA method for MurE (PDB ID-4C13) of *S.aureus* in the active site (kcal/mol)

Comp.	Libery	^a ∆G Coul	^b ΔG Lipo	°∆G Solv GB	^d ∆G vdW	^e ΔG
DE1	Life chemicals F223-0271	-15.5	-25.3	-8.5	-70.8	-73.3
DE2	Timtec ST003236	-7.6	-14.6	-12.4	-73.5	-67.8
DE3	Chem Div G756-0425	-5.4	-13.5	-16.5	-63.5	-64.3
DE4	Chemdiv K279-1370	-4.4	-21.2	-16.2	-73.8	-70.0
DE5	Enamine T6806127	-14.5	-18.7	-18.9	-83.3	-75.7
DE6	Enamine T5346963	-5.2	-11.6	-14.3	-53.8	-60.6
DE7	Enamine T6299159	10.5	-13.6	-12.1	-63.2	-59.4
DE8	Enamine T6067464	-3.6	-7.3	-17.1	-64.6	-56.8
DE9	Enamine T6520315	21.8	-9.3	-13.6	-42.4	-43.7
DE10	Enamine T6004991	19.7	-10.4	-14.1	-47.4	-49.3

^aCoulomb energy, ^bLipophilic energy, ^celectrostatic solvation energy, ^dvan der Waal energy, ^eFree energy binding.

pharmaceuticals

sponsored: MDP

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Structure of designed molecules which has been synthesized

MDP

sponsored:

Docking result of designed molecules

Table 5: Docking result of synthesized molecules in thecatalytic pocket of *S. aureus* MurD (kcal/mol)

Title	docking	^a glide	^b glide	^c glide	^d XP	^e XP	^f glide	Title	docking
	score	ecoui	evaw	emodel	нвопа	cEvdW	energy	Intie	score
A1	-4.5	-7.0	-49.4	-75.4	-0.4	-3.5	-56.4	A1	-4.5
A2	-6.3	-7.9	-45.0	-75.1	-1.2	-4.4	-52.9	A2	-3.7
A3	-5.4	-7.9	-54.6	-92.6	-0.7	-4.4	-62.5	A3	-3.6
A4	-4.6	-8.5	-55.8	-87.0	-1.0	-3.3	-64.3	A4	-4.1
A5	-5.0	-8.2	-53.0	-81.5	-0.3	-4.3	-61.2	A5	-4.7
A6	-5.4	-10.8	-51.9	-86.9	-0.3	-4.4	-62.7	A6	-4.0
A7	-4.8	-5.0	-49.5	-75.4	-0.1	-4.6	-54.6	A7	-3.4
A8	-6.1	-5.8	-46.9	-71.5	-0.9	-4.7	-52.6	A8	-4.1
B1	-5.5	-11.1	-38.2	-63.9	-1.9	-2.6	-49.4	B1	-6.5
B2	-4.7	-14.8	-32.2	-60.1	-1.9	-1.8	-47.0	B2	-7.7
B3	-6.3	-12.4	-39.0	-68.6	-1.9	-3.1	-51.4	B3	-7.4
B4	-5.8	-11.0	-40.7	-65.8	-2.1	-2.9	-51.7	B4	-8.0
B5	-6.3	-14.9	-39.3	-68.3	-2.2	-2.9	-54.3	B5	-6.1
B6	-5.4	-10.1	-35.2	-59.2	-1.9	-2.4	-45.3	B6	-4.1
B7	-5.3	-10.8	-39.8	-69.6	-1.9	-2.4	-50.6	B7	-5.1
B8	-5.2	-6.5	-48.7	-77.5	-0.9	-4.0	-55.2	B8	-5.0
B9	-5.2	-12.1	-40.9	-70.1	-1.2	-3.0	-53.0	B9	-5.0
B10	-5.7	-15.5	-35.6	-75.8	-1.8	-2.7	-51.1	B10	-5.3
B11	-5.2	-10.3	-43.7	-68.4	-1.2	-3.3	-54.1	B11	-6.0
C1	-4.6	-7.6	-35.8	-55.5	-0.6	-3.3	-43.4	C1	-3.3
C2	-4.7	-9.7	-40.0	-59.4	-0.5	-3.5	-49.7	C2	-4.0
С3	-4.1	-5.9	-43.2	-65.6	-0.7	-3.4	-49.1	C3	-4.2
C4	-4.8	-5.4	-38.8	-58.9	-1.1	-3.5	-44.2	C4	-3.8
C5	-4.7	-2.6	-38.5	-54.3	-0.8	-3.4	-41.1	C5	-4.6

Table 6: Docking result of synthesized molecules in thecatalytic pocket ofS. aureusMurE (PDB ID-4C13)(kcal/mol)

de			docking	^a glide	^b glide	^c glide	dup	^е ХР	^f glide
ergy		litle	score	ecoul	evdw	emodel	"хр HBond	EvdW	energy
-56.4	A	1	-4.5	-4.2	-45.2	-67.5	-0.4	-4.0	-49.4
-52.9	A	\2	-3.7	-5.1	-36.1	-57.2	-0.6	-2.9	-41.2
-62.5	A	۱3	-3.6	-5.5	-44.6	-70.3	0	-3.5	-50.1
-64.3	Α	4	-4.1	-4.1	-47.2	-66.7	-0.5	-3.6	-51.4
-61.2	Α	\5	-4.7	-5.0	-44.4	-65.6	-0.5	-4.1	-49.4
-62.7	Α	۰6	-4.0	-5.2	-41.3	-65.6	-0.5	-3.3	-46.5
-54.6	A	.7	-3.4	-4.0	-41.8	-66.2	-0.7	-3.7	-45.8
-52.6	A	8	-4.1	-3.2	-49.2	-71.3	-0.7	-4.1	-52.4
-49.4	В	31	-6.5	-9.7	-40.6	-63.3	-2.0	-3.6	-50.4
-47.0	В	32	-7.7	-14.3	-41.5	-75.7	-1.7	-3.5	-55.9
-51.4	В	3	-7.4	-16.5	-34.6	-70.6	-2.9	-1.8	-51.1
-51.7	В	4	-8.0	-13.3	-39.1	-81.9	-1.9	-3.5	-52.4
-54.3	В	5	-6.1	-13.4	-42.1	-70.9	-1.8	-3.2	-55.6
-45.3	В	6	-4.1	-6.8	-31.8	-49.0	-0.7	-2.4	-38.6
-50.6	В	37	-5.1	-5.6	-47.8	-59.1	-0.1	-4.3	-53.4
-55.2	В	8	-5.0	-9.4	-38.7	-61.7	-2.1	-3.1	-48.1
-53.0	В	9	-5.0	-6.5	-39.4	-61.1	-1.3	-2.8	-45.9
-51.1	В	10	-5.3	-7.6	-32.8	-64.4	-2.0	-2.5	-40.5
-54.1	В	311	-6.0	-9.2	-42.3	-65.5	-2.6	-3.5	-51.5
-43.4	С	1	-3.3	-5.7	-30.7	-49.0	-0.7	-2.1	-36.4
-49.7	С	2	-4.0	-4.5	-35.4	-56.0	-0.3	-2.4	-40.0
-49.1	С	3	-4.2	-8.1	-39.7	-61.8	-0.4	-2.4	-47.8
44.2	С	:4	-3.8	-4.9	-38.8	-59.3	-0.9	-3.4	-43.7
41.1	C	:5	-4.6	-4.8	-31.6	-49.8	-0.8	-2.1	-36.4

^aglide Coulomb energy; ^bglide van der Waals energy; ^cglide model energy; ^dextra-precision hydrogen bond ^eglide lipophilic contact plus phobic attractive term in the glide score; ^fglide energy.

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDP

Table 7: Binding free energy (MM-GBSA) calculation of designed molecules and *S. aureus* MurD complexes (kcal/mol)

Table 8: Binding free energy (MM-GBSA) calculation ofdesigned molecules and *S. aureus* MurE (pdb.C13)

Title	ª∆G Bind	^b ∆G Bind	دΔG Bind	^d ∆G Bind		Title	ª∆G Bind	^b ∆G Bind	¢∆G Bind	^d ∆G Bind	^e ∆G Bind
	Coulomb	Lipo	Solv GB	vdW	^e ΔG Bind		Coulomb	Lipo	Solv GB	vdW	
A1	-42.4	-37.0	26.1	-109.2	-123.9	A1	88.7	-9.6	-54.1	-55.6	-52.1
A2	-36.4	-40.0	38.3	-88.0	-90.7	A2	-24.9	-3.3	33.4	-18.2	-41.7
A3	-51.9	-25.8	42.2	-79.1	-81.4	A3	21.2	-14.8	-9.4	-49.6	-62.7
A4	-26.5	-36.6	12.9	-100.5	-108.5	A4	69.1	-15.6	-18.2	-50.5	-42.6
A5	-39.7	-22.9	21.9	-48.8	-81.8	A5	-24.3	-20.5	15.6	-42.3	-73.3
A6	-35.3	-33.1	19.6	-85.2	-111.5	A6	77.1	-18.4	-30.6	-37.9	-44.7
A7	-73.0	-32.9	53.9	-78.0	-85.9	A7	-29.9	-19.8	31.8	-66.3	-69.4
A8	-126.2	-45.1	106.7	-88.6	-115.6	A8	-118.1	-5.5	79.3	0.2	-45.2
B1	-39.3	-19.1	3.0	-26.0	-85.4	B1	-14.6	-1.0	13.5	-10.8	-46.2
B2	-16.4	-29.9	19.7	-87.3	-87.1	B2	68.0	1.1	-38.4	-38.5	-31.9
B3	30.9	-23.7	-23.5	-55.3	-71.1	B3	26.7	-2.1	-2.0	-25.5	-25.3
B4	33.2	-23.6	-28.5	-49.4	-63.1	B4	15.2	2.1	-24.9	-14.6	-37.2
B5	-29.3	-30.6	48.8	-87.3	-58.9	B5	7.9	-0.1	18.6	-13.9	-8.2
B6	-4.0	-23.2	-5.2	-39.9	-59.6	B6	-44.3	-5.4	35.6	-8.5	-26.3
B7	-70.7	-33.9	29.2	-69.6	-107.4	B7	-40.9	-4.7	59.9	-17.7	11.4
B8	-21.2	-25.7	32.0	-61.9	-70.6	B8	-73.4	-1.8	37.8	-1.9	-57.7
B9	-4.3	-15.4	3.6	-52.3	-57.5	B9	-45.7	0.2	45.3	-17.7	-42.7
B10	-44.6	-11.8	24.0	-41.7	-65.8	B10	-7.9	2.7	-11.5	-4.0	-54.0
B11	-13.6	-22.7	42.0	-93.4	-59.1	B11	-45.0	2.6	29.7	-4.5	-50.5
C1	-69.1	-28.0	57.2	-59.3	-86.1	C1	-19.0	-5.7	45.7	-17.5	-13.6
C2	-75.7	-31.6	44.2	-87.1	-111.4	C2	7.5	-5.3	36.0	-43.3	-23.2
С3	-8.4	-21.7	6.2	-68.6	-85.0	C3	-5.6	-4.1	57.8	-47.8	8.4
C4	-5.9	-16.9	-17.4	-52.3	-83.1	C4	-47.9	-5.5	37.9	-13.2	-38.9
C5	-60.7	-30.1	51.2	-71.5	-85.2	C5	-36.1	2.4	41.7	-9.5	-15.9

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDPI

Figure 5: 2D-Pictorial representation of docking interaction in the binding pocket of MurD *S. aureus* homology model (2XPC) of compound **(a)** A1, **(b)** B11, **(c)** C2.

pharmaceuticals

sponsored: MDPI

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Figure 6: 2D-Pictorial representation of docking interaction in the binding pocket of *S. aureus* MurE (4C13) of compound **A1 (a)**, **(b) B11**, **(c) C2**.

sponsored: MDPI

pharmaceuticals

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Table 9: Predicted ADMET profile of synthesized compounds.

Title	CNS	SASA	Donor HB	Acceptor HB	QP log Po/w	QP PCaco	PSA	Rule Of Three	Rule Of Five
A1	-2	699.2	2	8	2.4	33.7	154.6	0	0
A2	2	684.4	2	5	5.5	3186.7	50.8	1	1
A3	-2	728.6	2	9	1.5	4.2	196.8	1	1
A4	-2	745.0	2	8.7	2.5	23.2	164.5	0	1
A5	0	767.9	2	6.7	5.3	1295.7	77.9	1	2
A6	-2	692.4	2	7	3.9	145.9	116.1	1	1
A7	-2	687.8	2	8	2.4	36.2	152.7	0	0
A8	2	709.1	2	5	5.7	3348.4	49.5	1	1
B1	-2	606.5	2	6	1.4	17.9	126.2	1	0
B2	-2	626.8	3	7	-0.2	3.9	131.2	1	0
B3	-2	656.5	3	6.7	-0.1	2.5	149.8	1	0
B4	-2	642.4	3	8	-1.0	0.7	171.0	1	0
B5	-2	637.6	2	6	0.9	7.2	125.4	1	0
B6	1	563.6	2	5	2.1	157.6	81.2	0	0
B7	-2	651.0	2	6	2.0	28.4	120.3	0	0
B8	1	716.3	1	6.7	3.5	224.5	83.8	0	0
B9	1	627.5	2	6.5	2.3	145.0	89.3	0	0
B10	-2	655.7	2	7.5	1.6	16.2	133.7	1	0
B11	1	624.3	2	6.5	2.5	157.8	86.3	0	0
C1	0	594.6	1	6	3.3	1051.2	75.4	0	0
C2	-1	602.7	1	7.5	2.3	549.4	90.0	0	0
C3	-2	620.2	1	8.5	1.1	56.1	136.3	0	0
C4	-2	666.2	1	8.2	2.3	464.9	98.9	0	0
C5	-2	581.4	1	7.5	1.8	483.0	90.8	0	0
Recommended limits	-2 to +2	300- 1000	0.0-6.0	2.0-20.0	-2 to 6.5	<25 poor > 500 great nm/sec	7-200	Max 4	Max 3

sponsored: MDPI

Synthesis Scheme (Scheme 1& 2)

6th International Electronic Conference on **Medicinal Chemistry** 1-30 November 2020

sponsored: MDP

Acetone/K₂CO₃ or

CH₃COOH/CH₃COONa-stirring

Synthesis scheme 3

Fig 9: Schematic representation of synthesis Scheme 3.

6th International Electronic Conference on **Medicinal Chemistry**

sponsored: MDP

Spectral data of the synthesized compound A1

Fig 10: H¹ NMR spectrum of the synthesized compound A1.

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDPI

Spectral data of synthesized compound B11

Fig 11. H¹ NMR of synthesized compound **B11**.

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDPI

Spectral data of synthesized compound B11

sponsored: MDPI

pharmaceuticals

Fig 12: C¹³ NMR of the synthesized compound B11.

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Molecular dynamics study of literature molecule

Fig 13: The ligand-receptor complex during MD simulation different plots represent a) RMSD plot of C- α and backbone of the enzyme b) RMSF of all the MurE enzyme residues c) interaction of residues and types of interaction with time fraction for whole simulation time d) interaction profile of the ligand with different residues of MurE enzyme (**PDB ID 4C13**).

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored:

Molecular dynamics study of literature molecule

Fig 14: Representation of all the rotatable bonds torsion angle which represent the conformational change of the ligand during the whole MD simulation.

pharmaceuticals

sponsored: MDPI

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

Publication

JOURNAL OF RECEPTORS AND SIGNAL TRANSDUCTION https://doi.org/10.1080/10799893.2019.1605528

RESEARCH ARTICLE

Check for updates

An explorative study on *Staphylococcus aureus* MurE inhibitor: induced fit docking, binding free energy calculation, and molecular dynamics

Mohammed Afzal Azam (D, Niladri Saha (D) and Srikanth Jupudi (D)

Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty, Tamil Nadu, India

ABSTRACT

Staphylococcus aureus MurE enzyme catalyzes the addition of L-lysine as third residue of the peptidoglycan peptide moiety. Due to the high substrate specificity and its ubiquitous nature among bacteria, MurE enzyme is considered as one of the potential target for the development of new therapeutic agents. In the present work, induced fit docking (IFD), binding free energy calculation, and molecular dynamics (MD) simulation were carried out to elucidate the inhibition potential of 2-thioxothiazolidin-4-one based inhibitor 1 against *S. aureus* MurE enzyme. The inhibitor 1 formed majority of hydrogen bonds with the central domain residues Asn151, Thr152, Ser180, Arg187, and Lys219. Binding freeARTICLE HISTORY Received 19 August 2018 Accepted 6 April 2019

KEYWORDS

MurE inhibitor; induced fit docking; binding free energy; molecular dynamics

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored: MDP

Table 10: MIC ₅₀ values of al	compound A1 and C2.
--	---------------------

Title	^a SA-5021	^b SA-5022	°SA-43300	^d KP-2706	°PA-2036	^f EC-2567
A1	0.64	28.28	5.56	17.04	1.4	1.7
B11	72.37	2.07	12.98	36.41	1.41	1.72
C2	69.41	8.27	1.41	>250	1.45	1.70
Ciprofloxacin	10.34	6.37	16.49	1.39	6.87	1.55

(a) *S. aureus* (NCIM-5021) (b) *S. aureus* (NCIM-5022) (c) *S. aureus* (ATCC-43300) (d) *K. Pneumonia* (NCIM-2706) (e) *P. aureginosa* (NCIM-2036) (f) *E. coli* (NCIM-2567). **Concentration range has been used 250-1.95 µg/ml and as per CLSI guidelines.

Table 11. MBC values of compounds A1 and C2 3 strains of S. aureus (µg/ml)

Title	MRSA (ATCC 43300)			S. aureus (NCIM 5021)			S. aureus (NCIM 5022)		
	MIC	MBC	MBC/ MIC*	MIC	MBC	MBC/ MIC*	MIC	MBC	MBC/ MIC*
A1	5.56	62.5	11.24	0.64	-do-	-	28.28	72.5	2.56
C2	1.41	10	7.09	69.41	15	0.21	8.27	12.5	1.51

pharmaceuticals

sponsored: MDP

*Values ≤4 are bactericidal and ≥32 are having the chances of developing tolerance

Time-kill A1

1-30 November 2020

Fig 16: Represents pharmacophore model ADRRR_1 inter-site (a) distances in Å unit and (b) angles between the pharmacophoric points. Hydrogen bond acceptor (A): Pink sphere with arrow; Aromatic ring (R): yellow open circle; Hydrogen bond donor (D): blue sphere with arrow. (c) alignment of active compounds on the generated pharmacophore model (d) alignment of inactive compounds on the generated pharmacophore model (d) alignment of inactive compounds on the generated pharmacophore model.

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored:

Conclusion

A1

MIC **5.56** and MBC **62.5** μg/ml (ATCC-43300)MRSA Literature Molecule

S. aureus MurD (IC_{50} 6.4 µM)and MurE (IC_{50} 17 µM) and E. coli MurD (IC_{50} 8.2µM) and MurE (IC_{50} 180 µM) MIC- S.aureus (MRSA) 8 µg/ml

MIC **1.41** and MBC **10** μg/ml (ATCC-43300) MRSA

The finding from our studies, the literature molecule MIC is higher than compound A1 and C2 which attributes the penetration through the cell membrane. The penetration problem may be the presence of ionized glutamic acid which is hindering the penetration for the literature molecule. Compound A1 showed MIC_{50} 5 fold more than compound C2 and also the MBC is higher , which can be used for lead optimization . This two compound can further used for in-vitro studies for understanding the mechanism of action which will in turn help to develop the lead. All the previous attempt has failed because of the imbalance in the MIC and IC_{50} , which we think our studies can be one of the best way to develop novel antibiotic by targeting novel enzymes.

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

sponsored:

Acknowledgments

I would like to thank JSS College of Pharmacy, Ooty for providing the facilities and DST-SERB, Govt. of India, New Delhi for providing the funding (No.EMR/2016/002981).

6th International Electronic Conference on Medicinal Chemistry 1-30 November 2020

