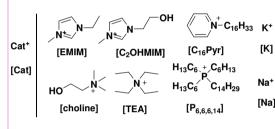
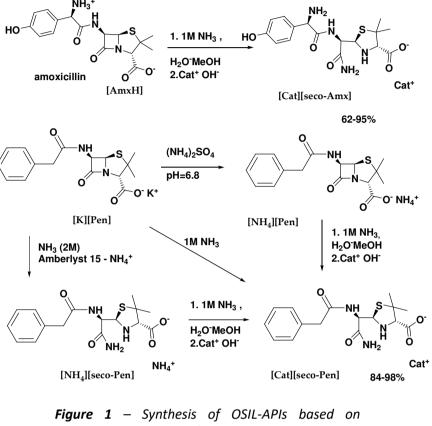

Antibacterial Activity Against Sensitive and Resistant bacteria of Organic salts and Ionic Liquids based on β-lactam Antibiotics and Their Hydrolysates

¹ Ciências Químicas e das Biomoléculas (CQB) e Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde do Instituto Politécnico do Porto, 4400-330 Porto, Portugal; ² LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; ³ LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências, E-mail: <u>z.petrovski@fct.unl.pt</u>


Introduction


FACULDADE DE CIÊNCIAS E TECNOLOGIA LISBOA

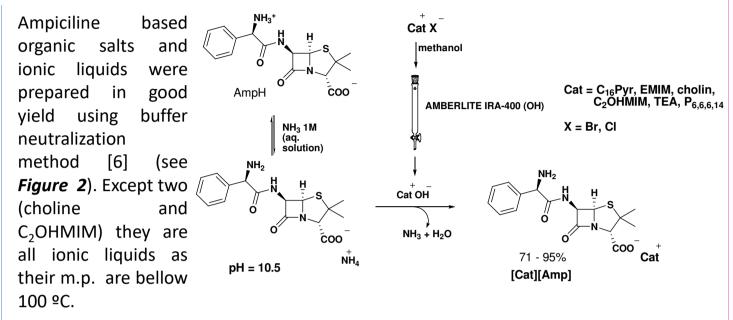
Organic salts and ionic Liquids (OSILs) containing active pharmaceutical ingredients (OSIL-APIs) have been presented as good drug delivery tool for APIs and drug modulations [1-3]. Our group described the suitable combination of pharmaceutical drugs and counter-ions as an innovative approach to improve the original bioavailability, reduce polymorphism as well as enhanced the therapeutic effect [1,2]. Herein, the synthesis and activity of some antimicrobial OSIL-APIs containing amoxicillin and penicillin in the hydrolysate form of β-lactam antibiotics as well as ciprofloxacin and norfloxacin as fluoroquinolone antibiotics [4,5].

β-Lactam hydrolysates derived OSIL-APIs

Ionic liquids and organic salts based on the ammonia anion hydrolysate of penicillin G and amoxicillin $(\alpha$ -amide of benzyl penicilloic acid and of amoxicillin penicilloic acid, respectively), abbreviated here as [seco-Pen] and [seco-Amx], respectively, were prepared by an ammonia buffered reaction procedure that was recently developed by our group [6].

ammonia hydrolysate of amoxicillin and penicillin

The novel β-Lactam hydrolysates derived OSIL-APIs were tested against sensitive and resistant bacteria **(Table 1** and **2).** The activity of prepared compounds was compared with standard antibiotics and their hydrolysates [Na][*seco*-Amx], [K][Pen] and [K][*seco*-Pen].


Table 1 – Antimicrobial activity of ammonia hydrolysed penicillin and amoxicillin based OSIL-APIs

 expressed as Minimum inhibitory concentrations (MICs in mM) and Relative Decrease of Inhibitory

 Concentration (RDIC)

Ampicillin derived OSIL-APIs

INSTITUTO DE INVESTIGAÇÃO E INOVAÇÃO EM SAÚDE UNIVERSIDADE DO PORTO

Ampicillin based IL-APIs were first tested against sensitive gram-positive and sensitive and resistant gram-negative bacteria **(Table 3** and **4)**. The activity of prepared compounds was compared with standard antibiotic [Na][Amp].

 Table 3 – Antimicrobial activity of ampicillin based IL-APIs against gram sensitive bacteria expressed as RDIC

Strains	Gram-negative	Gram-positive			
Comp.	E. coli ATCC 25922	K. pneumoniae	S. aureus ATCC 25923	E. fecalis	S. epidermis
Na[Amp]	1	1	1	1	1
[P _{6,6,6,14}][Amp]	0.02	0.5	0.1	1	1
[C ₁₆ Pyr][Amp]	0.1	50	1	10	10
[C ₂ OHMIM][Amp]	0.01	-	-	0.01	0.02

Compound	S. aureus ATCC25923	RDIC	E. coli ATCC25922	RDIC
Amx	0.050	1	0.005	1
Na[seco-Amx]	>5.0	< 0.01	>5.0	<0.001
[EMIM][seco-Amx]	5.0	0.01	2.5	0.002
[C ₂ OHMIM][seco- Amx]	0.050	1	5.0	0.001
[Choline][seco-Amx]	>5.0	< 0.01	>5.0	<0.001
[P _{6,6,6,14}][seco-Amx]	>5.0	< 0.01	0.5	0.01
[C ₁₆ Pyr][seco-Amx]	>5.0	< 0.01	0.050	0.1
K[Pen]	0.500	1	0.500	1
K[seco-Pen]	>5.0	<0.1	>5.0	<0.1
[EMIM][seco-Pen]	>5.0	<0.1	>5.0	<0.1
[C ₂ OHMIM][seco-Pen]	0.005	100	>5.0	<0.1
[Choline][seco-Pen]	>5.0	<0.1	5.0	0.1
[TEA][seco-Pen]	>5.0	<0.1	0.050	10
[P _{6,6,6,14}][seco-Pen]	>5.0	<0.1	>5.0	<0.1
[C ₁₆ Pyr][seco-Pen]	>5.0	<0.1	>5.0	0.1

Table 2 – Minimum inhibitory concentrations (mM) and relative decrease of inhibitory concentration (RDIC) of the new compounds derivate of penicillin and amoxicillin that were produced on resistant strains.

Compound	E. Coli CTX M9	RDIC	E. coli CTX M2	RDIC	MRSA ATCC 43300	RDIC
Amx	> 5	1	> 5	1	> 5	1
Na[seco-Amx]	>5	-	>5	-	>5	-
[EMIM][seco-Amx]	>5	-	> 5	-	> 5	-
[C ₂ OHMIM][seco- Amx]	> 5	-	> 5	-	5	>1
[P _{6,6,6,14}][seco-Amx]	0.05	>100	1.0	>5	> 5	-
[C ₁₆ Pyr][seco-Amx]	0.05	>100	0.05	>100	0.005	>1000
[Choline][seco-Amx]	0.5	>10	0.05	>100	0.5	10
K[Pen]	>5	1	> 5	1	> 5	1
K[seco-Pen]	>5	-	>5	-	>5	-
[EMIM][seco-Pen]	>5	-	>5	-	> 5	-
[C ₂ OHMIM][seco- Pen]	>5	-	>5	-	> 5	-
[Choline][seco-Pen]	1.0	>5	>5	-	1.0	>5
[P _{6,6,6,14}][seco-Pen]	0.5	>10	0.5	>10	> 5	-
[C ₁₆ Pyr]seco-[Pen]	0.5	>10	0.5	>10	0.05	>100
[TEA][seco-Pen]	>5	-	> 5	-	> 5	-

References

[1] Ferraz, et al.C. *RSC Adv.* **2014**, *4*, 4301-4307.[2] Marrucho I.M. et al. *Annual Rev. Chem. Biom. Eng.* **2014**, *5*, 527-546. [3] Mester, P. et al. *RSC Adv.* **2016**, *6*, 32220-32227. [4] Santos, M. M. et al.. *Pharmaceutics* **2020**, *12*, 694. [5] Ferraz, R. et al. *Pharmaceutics* **2020**, *12*, 221. [6] Ferraz, R. et al., *MedChemComm* **2012**, 3, 494-497.

6th International Electronic Conference on Medicinal Chemistry

1-30 November 2020

RDIC(OSIL-API)= MIC(API)/MIC(OSIL-API)

Table 4 – Minimum inhibitory concentrations (mM) and relative decrease of inhibitory concentration (RDIC) of the compounds derivate of ampicillin that were produced on resistant strains.

U.PORTO

FACULDADE DE CIÊNCIAS UNIVERSIDADE DO PORT

Strains	E. coli TEM CTX M9		E. coli CTX M2		E. coli AmpC Mox2	
Comp.	MIC	RDIC	MIC	RDIC	MIC	RDIC
Na[Amp]	>5	1	>5	1	>5	1
[P _{6,6,6,14}][Amp]	0.5	>10	0.5	>10	>5	-
[C ₁₆ Pyr][Amp]	0.005	>1000	0.05	>100	>5	-
[TEA][Amp]	>5	-	>5	-	>5	-
[cholin][Amp]	>5	-	>5	-	>5	-
[EMIM][Amp]	>5	-	>5	-	>5	-
[C ₂ OHMIM][Amp]	>5	-	>5	-	5	>1

Conclusions

The prepared OSIL-APIs derived from penicillin G, amoxicillin and ampicillin show enhanced activities against several bacteria strains, particularly against resistant ones. The RDIC prove to be a good tool to monitor effectiveness of OSIL-APIs in respect to parent antibiotics. In case of sensitive strains the activity of novel OSIL-APIs was usually not greatly increased but in case of resistant species the, MICs at the nanomolar scale were measured, representing RDIC values as high as >1000. The cationic species were mostly ineffective when in the form of halide salts (not shown here). These results highlight OSIL-APIs as a promising solution to fight against antibiotic resistance.

Acknowledgements: This research was funded by by Fundação para a Ciência e Tecnologia through projects (PTDC/QUI-QOR/32406/2017, PEst-C/LA0006/2013, PTDC/CTM/103664/2008) and PTDC/BTM-SAL/29786/2017, and one contract under Investigador FCT (L.C.B.). ZP thanks to Fundação para a Ciência e a Tecnologia, MCTES, for the Norma transitória DL 57/2016 Program Contract. This work was also supported by the Associate Laboratory for Green Chemistry, which is financed by national funds from FCT/MEC (UID/QUI/50006/2013), UIDB/50006/2020 and co-financed by the ERDF under the PT2020 Partnership Agreement (POCI-01- 0145-FEDER-007265). The authors also thank Solchemar company for support.

