**ECCS** 2020 **1st International Electronic Conference on Catalysis Sciences** 10-30 NOVEMBER 2020 | ONLINE



# Synthesis and characterization of Pd over novel TiO<sub>2</sub> mixtures: Insights on metal-support interactions

### Matías G. Rinaudo <sup>1,\*</sup>, Ana M. Beltrán <sup>2</sup>, María A. Fernández <sup>3</sup>, Luis E. Cadús <sup>1</sup> and Maria R. Morales <sup>1</sup>

<sup>1</sup> Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Universidad Nacional de San Luis (UNSL), Facultad de Química, Bioquímica y Farmacia, Almirante Brown 1455, Capital, 5700 San Luis, Argentina

<sup>2</sup> Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, 41011 Sevilla, Spain

<sup>3</sup> Instituto de Ciencia de Materiales de Sevilla, (CSIC-Univ. Sevilla), Avda. Américo Vespucio 49, 41092 Sevilla, Spain

\* Correspondence: <u>matirinaudo@gmail.com</u> (M.G.R.)

### Outline



- Introduction
- Materials and methods
- Results and discussion
- Conclusions
- Acknowledgements

### Introduction





### Introduction





# 💡 Goal

Study of Pd catalysts supported on novel mixtures of anatase, TiO<sub>2</sub> (II) and rutile obtained by high-energy ball milling in our previous work to evaluate the different metal-support interactions and their potential role in liquid-phase glycerol selective oxidation





#### XRD and STEM-EDS analyses



Figure 1. XRD spectra of catalysts (A) and STEM image and EDS analysis of Pd/Ti5 sample (B)

120-220 nm



#### XRD, textural and morphological analyses

Table 1. Weight fraction (%) of titania polymorphs, average crystallite size and textural properties of the catalysts

| Catalyst | Anatase<br>wt% | TiO <sub>2</sub> (II)<br>wf% | Rutile<br>wt% | Avg<br>crystallite<br>size (nm) | S <sub>₿ĔŢ</sub><br>(m <sup>2</sup> g⁻¹) | Pore<br>diameter<br>(nm) | Total Pore<br>Volume<br>(cm <sup>3</sup> g <sup>-1</sup> ) |  |
|----------|----------------|------------------------------|---------------|---------------------------------|------------------------------------------|--------------------------|------------------------------------------------------------|--|
| Pd/Ti5   | 99.2           | 0.3                          | 0.5           | 54                              | 10                                       | 21                       | 0.05                                                       |  |
| Pd/Ti45  | 48.4           | 43.3                         | 8.3           | 44                              | 15                                       | 26                       | 0.1                                                        |  |
| Pd/Ti120 | 23             | 49.4                         | 27.6          | 42                              | 17                                       | 9                        | 0.04                                                       |  |

80-180 nm

Crystallite size, particle size and S<sub>BET</sub> values in accordance with the milling time of the supports

100-200 nm

Higher enough to avoid internal diffusion limitations Low porosities may indicate an almost entirely external surface area

Preferential location of Pd species on the external surface is favored





#### **ICP-OES** and XPS analyses

| Catalyst | Pd loading<br>(wt%, ICP-OES) |
|----------|------------------------------|
| Pd/Ti5   | 0.20                         |
| Pd/Ti45  | 0.29                         |
| Pd/Ti120 | 0.36                         |

Differences respect to the theoretical value (0.25 wt%) were attributed to experimental errors

Oxygen vacancies contents in the same order as in the supports



### H<sub>2</sub>-TPR and O<sub>2</sub>-TPD analyses





### Conclusions



- Pd-based catalysts reported in this work showed distinctive properties associated to the unusual mixtures of titania phases present in the supports.
- ✓ Metal nanoparticles were well dispersed on the outer surface of TiO<sub>2</sub>, as confirmed by XPS and STEM-EDS analyses.
- ✓ Pd/Ti5 tended to form more anionic Pd species in the form of TiPd<sub>x</sub>O structures, whilst Pd/Ti45 and mainly Pd/Ti120 formed more cationic PdO<sub>x</sub> species, as observed by XPS measurements.
- Achieved metal-support interactions could improve redox properties, inducing low-temperature reducibility and an increase in the mobility of reactive oxygen species, as evidenced by H<sub>2</sub>-TPR and O<sub>2</sub>-TPD analyses.
- Present catalysts are being tested in liquid-phase glycerol selective oxidation in order to study the influence of metal-support interactions on the catalytic performance.

### **Acknoledgements**





Universidad Nacional de San Luis (Argentina)





Agencia Nacional de Promoción Científica y Tecnológica (Argentina)

#### CONICET



Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina)



Ministerio Español de Ciencia, Innovación y Universidades (España)



Universidad de Sevilla (España)



Consejo Superior de Investigaciones Científicas (España)