

HIGHLY ACTIVE PANDANUS NANOCELLULOSE-SUPPORTED POLY(AMIDOXIME) COPPER (II) COMPLEX FOR ULLMANN CROSS-COUPLING REACTION

BY:

CHOONG JIAN FUI

SUPERVISED BY:

MAIN SUPERVISOR	PROF. DR. MD LUTFOR RAHMAN
CO-SUPERVISOR	DR. MOHD SANI BIN SARJADI

BACKGROUND

Synthesis process is necessary due to the **molecular complexity** and various type of **bond formation** through the organic transformations is being grown in parallel fashion.

C-C or C-N bonds formation (cross-coupling) reactions are **important** for the synthesis of essential chemicals such as:

1. Fine chemicals,

2. Drug and intermediate products,

3. Natural products etc.

Transition metal catalysts (Pd, Cu, Ni) are normally used for cross-coupling reactions (suzuki, heck, sonogashira, click etc.).

OBJECTIVES

- To extract the cellulose from the agro-waste (pandanus fruit fibre) and utilize to synthesize a poly(amidoxime) ligand,
- To prepare heterogeneous copper catalysts from the cellulose-supported amidoxime ligands,
- To evaluate the catalytic ability and reusability of synthesize catalyst in Ullmann cross-coupling reaction.

METHODOLOGY

Cellulose Extraction

(Sources: Rahman et al., 2016)

Synthesize nanocellulose

Heat until 50°C

Procedure:

- 1. Boil the cellulose with 40% of H₂SO₄ for 1 hours.
- 2. Pour the mixture into the cool water after reaction done.
- 3. Neutralize the solution using NaOH .
- 4. Wash and dry.

Graft Copolymerization (Poly(acrylonitrile))

Heat until 55°C

Procedure:

- 1. Hydrolyze cellulose react with ceric initiator in inert condition for 15 min
- 2. Purified monomer (methyl acrylate) is

added.

- 3. Heat for 4 hours at 55°C.
- 4. Wash and dry

(Sources: Mandal et al., 2016)

Synthesis of Poly(amidoxime) Ligand

Heat until 70°C for 6 hours

Procedure

- 1. Hydroxylamine hydrochloride is dissolved into 4:1 methanolic solution.
- 2. PMA is added into the hydroxylamine solution and heat for 6 hours at 70°C.
- 3. PHA ligand is washed by methanolic solution.
- 4. In order to cover chelating polymeric ligand into H-form ligand, the ligand was treating with 100 mL of 0.1 M of hydrochloric acid (HCl) in methanolic for five minutes.
- 5. Wash and dry.

(Sources: Shaheen et al., 2016)

Preparation Of Metal Catalyst (Cu²⁺)

Wash the ligand and dry it. The ICP-OES analysis should be used to estimate the copper adsorbed

(Sources: Rahman et al., 2016)

Reaction Mechanism

Ullmann Reactions

RESULT

2

Product

Pandanus fruit and its fibre

Cellulose from Pandanus fruit fibre

Extraction: 49.5 ± 1.0 g from 100g dried fruit fibre Yeld: (\approx 50%)

(nanocellulose)

Physical stability of cellulose and nanocellulose

15 min String

Leave For 3 hour

Product

Poly(acrylonitrile)

Yield: **18.15 g** from 10g dried nanocellulose

Poly(amidoxime) Ligand

Yield: **28.50g** from 10g dried poly(acrylonitrile)

Cu(II)@PAM

ICP-OES= 0.50mmol/g of copper

FE-SEM Analysis

Pandanus fruit fiber

Pandanus-cellulose

Magnification: 1000X

FE-SEM ANALYSIS

Poly(acrylonitrile) Magnification: 5000X

nanocellulose Magnification: 1000X

FE-SEM Analysis

Poly(amidoxime)

Magnification: 5000X

Energy Dispersive X-ray Diffraction (EDX Analysis)

Cu(II)@PAM

Copper = 35.4% Carbon = 40.7% Oxygen = 20.2% Nitrogen= 3.8%

TGA & DSC

XRD RESULT

XPS ANALYSIS

•

Optimization Of Ullmann Reaction

Entry	Cu(II)@PAM (mg)	Temperature (°C)	Time (h)	Yield (%)
1	15	80	8	98
2	5	50	8	99
3	3	50	2	99
4	1.5	50	2	89

• Conditions: 4-nitrobenzyl bromide (1 mmol), phenol (1.2 mmol), a catalytic amount of complex copper and 3 mol equiv. of K₂CO₃ in 5 mL of acetonitrile.

REACTION

Mechanism for Ullmann Reaction

REUSABILITY

LEACHING STUDY

CONCLUSION

Successful synthesis high active, stable and safe copper catalyst for Ullmann etherification reaction. The synthesized copper catalyst can afford the Ullmann etherification in good to high yield of product.

FUTURE WORK

- Test the synthesize catalyst in other cross-coupling reaction (C-C, C-N, C-S, etc.)
- Utilize the Cu(II)NPs@PAM in total synthesis of natural product, medicine compound.

REFERENCES

- D. Meijere A, Diederich F, editors. In Metal-Catalyzed Cross-Coupling Reactions, Second Completely Revised and Enlarged Edition., 2004, Vol. 2.
- 1. Diederich F, Stang PJ, editors. *Metal-catalyzed Cross-Coupling Reactions.* **1998**, Vol.1.
- 2. Knochel P, Leuser H, Gong LZ, Perrone S, Kneisel FF. Chem Organozinc Compd. 2006, 287.
- 3. Knochel P, Leuser H, Gong L-Z, Perrone S, Kneisel FF. Polyfunctional zinc organometallics for organic synthesis. 2005, 1
- 4. Fouquet E, Herve A. Polyfunctional tin organometallics for organic synthesis. 2005, 1
- 5. Shimizu M, Hiyama T. Polyfunctional silicon organometallics for organic synthesis. 2005, 1
- 6. Knochel P, Krasovskiy A, Sapountzis I. Polyfunctional magnesium organometallics for organic synthesis. 2005, 1
- 7. Knochel P, Ila H, Korn TJ, Baron O. Functionalized organoborane derivatives in organic synthesis. 2005, 1
- 8. Knochel P, Kopp F. Handbook of functionalized organometallics. 2005, 1
- 9. Stephenson GR. Polyfunctional electrophilic multihapto-organometallics for organic synthesis. 2005, 2
- 10. Rilatt I, Jackson RFW. J Org Chem. 2008; 73:8694.
- 11. Netherton MR, Fu GC. Angew Chem, Int Ed. 2002; 41:3910.
- 12. Anderson TJ, Jones GD, Vicic DA. J Am Chem Soc. 2004; 126:8100.
- 13. Jones GD, McFarland C, Anderson TJ, Vicic DA. Chem Commun., 2005, 4211.
- 14. Fürstner A, Martin R, Krause H, Seidel G, Goddard R, Lehmann CW. J. Am Chem Soc., 2008, 130:8773.
- 15. Kleimark J, Hedström A, Larsson P-F, Johansson C, Norrby P O. ChemCatChem. 2009, 1:152.
- 16. Md. S. Islama, B. H. Mandalab, T.K. Biswasac, Md. L. Rahman, S. S. Rashida, S.H. Tana and S. M. Sarkar. J. Name., 2012, 3, 1-3
- 17. S. L. Xie, Y. H. Hui, X. J. Long, C. C. Wang, Z. F. Xie, Chin. Chem. Lett., 2013, 24, 28.
- 18. O. Vassylyev, J.Chen, A.P. Panarello, J.G. Khinast, Tetrahedron Lett., 2005, 46, 6865.
- 19. C. Descorme, P. Gallezot, C. Geantet, and C. George. Chem. Cat. Chem., 2004, 1, 1 11.
- 20. K.K.R. Datta, M. Eswaramoorthy, C.N.R. Rao, J. Mater. Chem. 2007, 17, 613.
- 21. J. Zhu, J. Zhou, T. Zhao, X. Zhou, D. Chen, W. Yuan, Appli. Catal. A: Gen., 2009, 352,

- 23. S.J. Guo, J. Bai, H.O. Liang, C.P. Li, Chin. Chem. Lett. 2016, 27, 459–463.
- 24. M.J.G. Escalonilla, P. Atienzar, J.L.G. Fierro, H. Garcıa, F.J. Langa, Mater. Chem., 2008, 18, 1592–1600.
- 25. J.G. de Vries, Can. J. Chem., 2001, 79, 1086–1092.
- 26. S.S. Shendage, U.B. Patil, J.M. Nagarkar, Tetrahedron Lett., 2013, 54, 3457.
- 27. L.F. García, M. Blanco, C. Blanco, P. Álvarez, M. Granda, R. Santamaría, R.J. Menéndez, Mol. Catal. A: Chem., 2016, 416, 140–146.
- 28. C. Shen, H. Shen, M. Yang, C. Xia, P. Zhang, *Green Chem.*, 2015, 17, 225–230.
- 29. P. Cotugno, M. Casiello, A. Nacci, P. Mastrorilli, M.M. Dell'Anna, A. Monopoli, J.
- 30. Organomet. Chem., 2014, 752, 1–5.
- 31. J. Li, X.Y. Shi, Y.Y. Bi, J.F. Wei, Z.G. Chen, ACS Catal., 2011, 1, 657.
- 32. P. Nehra, B. Khungar, K. Pericherla, S.C. Sivasubramanian, A. Kumar, Green Chem., 2014, 16, 4266–4271.
- 33. M.S. Sarkar, H. Qiu, M.J. Jin, J. Nanosci. Nanotechnol., 2007, 7, 3880–3883.
- 34. L. Jin, J. Liebscher, Chem. Rev., 2007, 107, 133
- 35. M. L. Rahman, S. M. Sarkar, M. M. Yusoff, M. H. Abdullah. RSC Adv., 2016, 6, 745-757.
- 36. M. L. Rahman, S. M. Sarkar, M. M. Yusoff. Front. Environ. I Sci. Eng., 2016, 10, 352-361.
- 37. S. M. Sarkar, T. Sultana, T. K. Biswas, M. R. Lutfor, M. M. Yusoff, New J. Chem. 2016, 40, 497.
- 38. O. A. Anunziata, M. L. Martínez and A. R. Beltramone. *Materials*, 2009, 2(4), 1508-1519.
- 39. Y. Han, G. Hwanga, H. Kima, B.Z. Haznedaroglu, B. Lee, Chem. Eng. J. 2015, 259, 653.
- 40. M. S. Sarkar, M. R. Lutfor, M. M. Yusoff, RSC Adv. 2015, 5, 1295.
- 41. D. Zhao, J. Feng, G. D. Stucky, Science, 1998, 279, 548.
- 42. T. F. Parangi, R. M. Patel and U. V. Chudasama. Bull. Mater. Sci., 2014, Vol. 37, No. 3, 609–615.
- 43. B. H. Mandal, M. R. Lutfor, M. M. Yusoff, K. F. Chong, S. M. Sarkar, Carbohydrate Polym. 2017, 56, 175.
- 44. S. M. Sarkar, Md. L. Rahman, and M. M. Yusoff. RSC Adv., 2014, 00, 1-3.
- 45. B. Yuan, Y. Pan, Y. W. Li,* B. Yin, and H. F. Jiang. Angew. Chem. Int. Ed., 2010, 49, 4054 4058

