

Comparative Catalytic and Photocatalytic Reduction of NO₃⁻ by the In Situ Generated Solar H₂ over Pt-Cu/TiO₂ Catalysts

<u>Anca Vasile¹</u>*, Florica Papa¹, Veronica Bratan¹, Mircea Teodorescu², Cornel Munteanu¹, <u>Ioan Balint¹</u>*

¹"Ilie Murgulescu" Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania, Phone: +40-21-3121147; avasile@icf.ro (A.V.); frusu@icf.ro (F.P.); vbratan@icf.ro (V.B.); cornel_munteanuro@yahoo.com (C.M.); ibalint@icf.ro (I.B.) ²University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; mircea.teodorescu@upb.ro (M.T)

*Correspondence: avasile@icf.ro (A.V.); ibalint@icf.ro (I.B.)

Introduction

-Nitrate - one of the most common problems regarding possible contaminants of groundwater; -Promising technology- Catalytic hydrogenation of nitrate have been proposed for the first time by Vorlop et al.¹;

-Studies-Reaction mechanism based on catalytic reduction over bimetallic catalysts using a noble metal (Pd, Pt) and a transition metal (Cu, Sn, In) in the presence of hydrogen as the reductant²; -The photochemically produced hydrogen could play an important role for the effective reduction of NO₃;

-Assumption-In structure sensitive reactions, N-N bond formation rates is related to preferential orientation of Pt nanocrystal facets³.

-To develop materials in order to study the nitrate removal from aqueous phase; -To tackle nitrate removal from aqueous phase by two approaches: (i) nitrate catalytic reduction by external H₂ (dark reaction) and (ii) nitrate photocatalytic reduction by in situ generated H₂ under UV-light irradiation;

- -To study the effect of well-defined Pt Np's loading on the catalytic reactivity;
- -To make deeper insight into NO₃ catalytic reduction and photocatalytic reduction mechanisms;

-To study the ability of obtaining and using the in situ generated H_2 as reducing agent.

Materials and Methods

MATERIALS		Characterization Scanning Electron Microscopy (SEM);		
Support:TiO ₂ P-25				
➢ Metals precursors: H₂PtCl ₆ ·6H₂O	and $Cu(NO_3)_2$ '3H ₂ O	>Transmission Electron Microscopy (TEM);		
>Thermosensitive polymer ^{4,5} : trib	lock copolymer structure - consist in a poly(ethylene glycol) (PEG)	>CO Pulse Chemisorption:		
middle block (PEG, Mn≈4000 Da) and poly(NIPAM-co-TBAM) statistical copolymers as side chains (3		>UV-Vis analysis.		
mol% TBAM in the initial monomer mixture)				
>Prepared catalysts	Denomination	Catalytic tests		
2wt% (Pt-Cu)/TiO2	Pt-Cu I	>Catalytic hydrogenation of aqueous nitrate solution in dark conditions by external		
0.5wt% Pt/2wt% (Pt-Cu)/TiO2	Pt-Cu D	H _a supply:		
1.5wt% Pt/TiO2	Pt I	>Photocatalytic aqueous nitrate solution:		
0.5wt% Cu/TiO2	CuI	Water splitting under ultraviolet (UV) light irradiation.		
>Thermosensitive polymer ^{5,6} -used to control the structure and growth of the Pt nanocrystals				

Results

SEM :	Images Pt-Cu I	Pt-Cu I (Wetness impregnation		
Pt-Cul	Pt-Cu D	Fine Pt particles (<1nm) on TiO ₂		
	Pt			
2μm 20.00 kV 4.5 20.000 x 10.0 mm 7.46 μm ETD SE	2μm 20.00 kV 1.0 20 000 x 10.0 mm 7.46 μm ETD SE			

EDS mapping and spectra confirmed the **Pt-Ct** presence of Pt and Cu on the TiO₂ surface

Pt-Cu D (Pt Np's deposition)

TEM Images

Round-shaped Pt Np's of about 7-10 nm are obtained with the thermosensitive polymer

CO Pulse Chemisorption Data

Catalyst	Met. Surf. Area (m ² /g)	Pt Crystallite Size (nm)	Pt Dispersion (%)
Pt-Cu I	1.63	0.86	43.96
Pt-Cu D	0.92	2.03	18.61

Decreasing the particle sizes results in improved dispersion and an increase in the number of active sites

Pt-Cu D (Pt Np's

Pt-Cu D

700

600

Pt-Cu l

Pt-Cu I (Wetness

impregnation)

Larger Pt Np's-

increase in the

temperature of

reduction

Pt species

Pt and Cu

the other

reducible

more

each make

deposition)

Ti⁴⁺/Ti³⁺

500

TPR Profiles

Pt²⁺/Pt⁰

Cu⁺/Cu⁰

400

Ti⁴⁺/Ti³⁺

277°C

300

UV-Vis Spectra

Hydrogen Generation under UV-light

DarkDenitration

on the surface of the catalyst.

PtO_x/Pt²⁺

PtO_x/Pt⁰

′CuO_x/Cu⁰

200

150

100

50

⊐ 200

150

100

50

60°C

48°C

100