1st International Electronic ECCS **Conference on Catalysis Sciences** 2020 10-30 NOVEMBER 2020 | ONLINE

Activated biochar-based metal catalysts for steam reforming of pyrolysis bio-oil model compound

Christian Di Stasi^{1*}, Marta Cortese², Gianluca Greco¹, Belén González¹, Vincenzo Palma², Joan J. Manyà¹

¹ Aragón Institute of Engineering Research (I3A), Technological College of Huesca, University of Zaragoza, crta. Cuarte s/n, Huesca, E-22071, Spain ² Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy

Correspondence: christiandistasi@unizar.es

GreenCarbon framework

http://greencarbon-etn.eu

Outline

- Introduction
- Objective
- Methodology
- Results
- Conclusions and future work

Introduction

Objective

Methodology

Results

Introduction

Introduction

Organic condensable fraction (i.e. Bio-oil)

- **X** The high water content lowers the heating value of the products
- **X** Heterogeneous composition depending on the feedstock
- Systems breakdown caused by the condensation in pipes and heat exchangers
- The solution could be represented by the steam reforming of the liquid products
 - Less condensation extent
 - No external water is needed
 - More valuable permanent gases

Introduction

Objective

Methodology

Results

Organic condensable fraction (i.e. Bio-oil)

Composition of bio-oil from slow pyrolysis of eastern redcedar woods^a (SW/HW450/550 = sapwood/heartwood pyrolyzed at 450/500 °C).

Chemicals	Group	SW450	HW450	SW500	HW500		
Cellulose/hemicellulose derived compounds (area%)							
Acetic acid	Acid	18.18 ± 1.45	11.25 ± 1.52	18.15 ± 0.16	9.75 ± 1.84		
Propionic acid	Acid	2.42 ± 3.17	2.42 ± 0.36	3.42 ± 0.62	2.32 ± 0.85		
1-Hydroxy-2-butanone	Ketone ^b	2.54 ± 0.31	1.49 ± 0.28	2.09 ± 0.66	1.21 ± 0.26		
Cylcopentanone	Ketone	2.92 ± 0.28	1.79	3.58	1.54 ± 0.13		
2-Cyclopenten-1-one, 2-methyl-	Ketone	4.42 ± 0.46	1.56 ± 0.56	2.58 ± 0.91	1.51 ± 0.25		
Furfural	Furan	22.69 ± 0.40	26.20 ± 2.16	20.10 ± 3.39	21.80 ± 3.23		
2-Furanmethanol	Furan	3.61 ± 1.54	-	1.47 ± 0.26	-		
Ethanone, 1-(2-furanyl)-	Furan	0.99 ± 0.15	-	-	-		
2-Furancarboxaldehyde, 5-methyl-	Furan	3.16 ± 0.57	4.46 ± 0.97	2.94 ± 0.21	4.43 ± 0.38		
Lignin derived compounds (area%)							
Toluene	Aromatic	1.97 ± 1.02	-	-	-		
p-Xylene	Aromatic	1.90 ± 0.14	1.65 ± 0.59	1.54 ± 0.51	1.77 ± 0.67		
Phenol	Phenol	4.27 ± 2.08	3.04 ± 0.12	3.25 ± 1.24	3.55 ± 1.30		
Phenol, 2-methyl-	Phenol	2.43 ± 0.79	2.54 ± 0.19	1.83 ± 0.39	2.71 ± 2.07		
p-Cresol	Phenol	1.31 ± 0.68	1.67 ± 0.63	-	-		
Phenol, 2-methoxy-	Guaiacol	10.34 ± 1.63	7.98 ± 0.67	10.13 ± 1.82	5.22 ± 0.03		
Creosol	Guaiacol	4.28 ± 0.02	5.71 ± 0.33	4.24 ± 0.14	4.34 ± 0.61		
Cedar oil compounds (area%)							
(-)-alpha-cedrene	Olefin	8.39 ± 1.12	12.97 ± 1.08	8.65 ± 1.46	18.15 ± 0.74		
(+)-beta-cedrene	Olefin	2.27 ± 0.32	1.93 ± 0.93	1.81 ± 0.10	2.89 ± 0.34		

^a "--"means the relative peak area percentage of the detected compound is less than 0.5%.

^b Values listed above are means ± standard deviation of two subsamples.

Due to the numerous compounds present in a real bio-oil, model compounds such as acetic acid (AcOH), ethanol, benzene, toluene and eugenol, are usually employed to study the reaction system

*Z. Yang, A. Kumar, R. L. Huhnke, M. Buser, and S. Capareda, "Pyrolysis of eastern redcedar: Distribution and characteristics of fast and slow pyrolysis products," *Fuel*, vol. 166, pp. 157–165, 2016.

Introduction

Objective

Methodology

Results

Aim of the work

Introduction

1. Production of physically activated biochar with proper specific textural properties to be employed as catalyst support

2. Production of mono and bimetallic biochar-supported catalysts

Objective

3. Test of the produced catalysts for the steam reforming of acetic acid (AcOH) as bio-oil model compound

Results

Methodology

Acetic acid+ water

Universidad Zaragoza

Conclusions and

future work

Biochar Activation (i.e. Catalysts Support Production)

Material	Apparent specific surface area $(m^2 g^{-1})$		Specific pore volume ($cm^3 g^{-1}$)			
	S_{BET}^{a}	S_{BET}^{b}	V_t	V_{mic}	V_{mes}	Vultra
BC	1.68	72.4	ND	ND	ND	0.023
ActBC	743	414	0.333	0.301	0.032	0.226

^{*a*} Determined from N₂ adsorption data a -196 °C.

^{*b*} Determined from CO₂ adsorption data a 0 °C.

*BC=wheat straw biochar produced at 500°C and 0.1 MPa

Introduction

Objective Methodology

Results

		Monometallic			
- SETTAIN		Sample	Active phase	Load (wt. %)	
		BC	/	/	
		BCFe	Fe	7	
	Wet impregnation	BCCo	Со	7	
WIGNER KERVIS	<u></u>	BCCe	Ce	7	
	CC	BCK	К	7	
	Calcination at 600°C in N_2	BCNi7	Ni	7	
	2	BCNi4	Ni	4	
		BCNi10	Ni	10	
			Bimetallic		
 Fe(NO₃)₃·9H₂O 		Sample	Active phase	Load (wt. %)	
• Ni(NO) .6H O		BCFeNi	Fe/Ni	7/10	
$N(NO_3)_2 O(N_2O)$		BCCoNi	Co/Ni	7/10	
• $Co(NO_3)_2 \cdot 6H_2O$		BCCeNi	Ce/Ni	7/10	
• $Ce(NO_3)_3 \cdot 6H_2O$		BCKNi	K/Ni	7/10	

• KNO₃

Results

Steam reforming of AcOH

Monometallic catalysts

9

Zaragoza

future work

Bimetallic catalysts

*BCKNi was very unstable. Therefore the results are not reported.

Cycling stability test of BCCoNi

- Constant AcOH conversion and pressure drop value from 600 to 475 °C.
- When the reactor was heated up again, the pressure drop increased again until the set temperature was reached.
- The final conversion was the same that that measured for the fresh catalyst, indicating negligible deactivation extent.

Introduction

Objective

Methodology

Results

- The physically activated biochar showed an excellent potential to be employed as support for metal active phases.
- Most of the tested metal catalysts showed rapid deactivation degree probably due to high coke deposition and/or sintering of the active phases.
- Among the monometallic catalysts, the Ni-based showed negligible deactivation rates. In particular a loading of 10 wt. % guaranteed a good tradeoff between performances and coke deposition.
- The Co-Ni bimetallic catalyst showed the best results obtained in this study, with high conversions even at low temperatures and almost no coke production.

Introduction

Objective

Methodology

Results

- Deep catalysts characterization (FT-IR, Raman, SEM, XRD).
- Add more model compounds to better simulate a real bio-oil composition.

Objective

Methodology

Results

Thank you for your attention

christiandistasi@unizar.es

http://greencarbon-etn.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 721991.

