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Organic condensable fraction (i.e. Bio-oil)

The high water content lowers the heating value of the products

Heterogeneous composition depending on the feedstock

Systems breakdown caused by the condensation in pipes
and heat exchangers

• The solution could be represented by the steam reforming of the liquid products

Less condensation extent

No external water is needed

More valuable permanent gases
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Organic condensable fraction (i.e. Bio-oil)

*Z. Yang, A. Kumar, R. L. Huhnke, M. Buser, and S. Capareda, “Pyrolysis of eastern redcedar: Distribution and characteristics of fast and slow pyrolysis products,” Fuel, 
vol. 166, pp. 157–165, 2016.

Due to the numerous compounds present in a real bio-oil, model compounds such as acetic
acid (AcOH), ethanol, benzene, toluene and eugenol, are usually employed to study the
reaction system
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1. Production of physically activated biochar with proper specific textural properties 
to be employed as catalyst support

2. Production of mono and bimetallic biochar-supported catalysts

3. Test of the produced catalysts for the steam reforming of acetic acid (AcOH) 
as bio-oil model compound 
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*BC=wheat straw biochar produced at 500°C and 0.1 MPa
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𝐶𝑂2 + 𝐶 ⇄ 2 𝐶𝑂

T=700°C; P= 1.0 MPa; CO2 = 100 vol.%; t= 2.5 h

Material 

Apparent specific surface area (m2 g–1)  Specific pore volume (cm3 g–1) 

SBET
a SBET

b  Vt Vmic Vmes Vultra 

BC 1.68 72.4  ND ND ND 0.023 

PAC15 455 351  0.196 0.145 0.010 0.141 

PAC30 637 414  0.283 0.234 0.018 0.140 

PAC40 815 440  0.366 0.306 0.024 0.151 

 1 

                                                 
a Determined from N2 adsorption data a –196 °C. 

b Determined from CO2 adsorption data a 0 °C. 
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Wet impregnation
&

Calcination at 600°C in N2

• Fe(NO3)3·9H2O
• Ni(NO3)2·6H2O 
• Co(NO3)2·6H2O 
• Ce(NO3)3·6H2O 
• KNO3

Monometallic 

Sample Active phase Load (wt. %) 
BC / / 

BCFe Fe 7 
BCCo Co 7 
BCCe Ce 7 
BCK K 7 

BCNi7 Ni 7 
BCNi4 Ni 4 

BCNi10 Ni 10 

Bimetallic 

Sample Active phase Load (wt. %) 
BCFeNi Fe/Ni 7/10 
BCCoNi Co/Ni 7/10 
BCCeNi Ce/Ni 7/10 
BCKNi K/Ni 7/10 
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AcOH, Acetone, 
H2,CO2, CO, CH4

Acetic acid+ water

Quadrupole mass 
spectrometer analyzer 

T= 400 - 600°C
P= 0.1 MPa
tr=135 ms
molH2O/molAcOH = 4 

• XAcOH = (FAcOH, in – FAcOH, out) FAcOH, in 
–1 100

• YH2 = FH2, out (4 FAcOH, in)–1 100
• YAc = 2 FAc, out FAcOH, in

–1 100
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• Low conversions and 
hydrogen yields, even at 
high temperature
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• High conversions from 550 
to 600°C.

• Acetone yield not 
negligible.

• Highest conversions, close 
to the equilibrium, even 
at 475°C.

• No acetone production.
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*BCKNi was very unstable. Therefore the results are not reported.
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• Constant AcOH conversion and 
pressure drop value from 600 to 
475 °C.

• When the reactor was heated up 
again, the pressure drop 
increased again until the set 
temperature was reached.

• The final conversion was the 
same that that measured for the 
fresh catalyst, indicating 
negligible deactivation extent.
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• The physically activated biochar showed an excellent potential to be employed as support for 
metal active phases. 

• Among the monometallic catalysts, the Ni-based showed negligible deactivation rates. In 
particular a loading of 10 wt. % guaranteed a good tradeoff between performances and coke 
deposition.
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• Most of the tested metal catalysts showed rapid deactivation degree probably due to high 
coke deposition and/or sintering of the active phases.

• The Co-Ni bimetallic catalyst showed the best results obtained in this study, with high 
conversions even at low temperatures and almost no coke production.
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• Add more model compounds to better simulate a real bio-oil composition.

• Deep catalysts characterization (FT-IR, Raman, SEM, XRD).

ObjectiveIntroduction
Conclusions and 

future work
ResultsMethodology



Thank you for your 

attention
christiandistasi@unizar.es

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the 
Marie Skłodowska-Curie grant agreement No 721991.

http://greencarbon-etn.eu

mailto:christiandistasi@unizar.es
http://greencarbon-etn.eu/

