

Noble metals-based catalysts for hydrogen production via bioethanol reforming in a fluidized bed reactor

Concetta Ruocco*, Vincenzo Palma, Marta Cortese, Marco Martino cruocco@unisa.it

University of Salerno, Department of Industrial Engineering, Fisciano (SA), Italy

INTRODUCTION

BIOETHANOL Typical composition: 12-15 wt% ethanol^[1] Impurities: few ppm to 1% of heavier alcohols, acids, aldehydes, esters

Expensive steps for bioethanol dehydration and purification Direct use of raw bio-ethanol

Rarely investigated for reforming: negative impact on the catalyst^[2]

1st International Electronic Conference on Catalysis Sciences 10-30 NOVEMBER 2020 | ONLINE Wang. W. et al., Int. J. Energy Res. 34 (2010) 1285-1290.
Le Valant A. et al., Int J Hydrogen Energy 36 (2011) 311-318.

INTRODUCTION

International Electronic **Conference on Catalysis Sciences** 2020

AIMS OF THE WORK

EVALUATION OF THE STABILITY OF BIMETALLIC CATALYSTS FOR OXIDATIVE STEAM REFORMING IN A FLUIDIZED BED

ECCS 2020 1st International Electronic Conference on Catalysis Sciences

Impregnation order (Ni earlier than Pt), Ni (10 wt%) and Pt/Ru (3 wt%) loadings as well as CeO_2/SiO_2 ratio (30 wt%) previously optimized

Palma V. et al., Int. J. Hydrogen Energ., 42, 2017, 1598-1608.

Characterization: Surface Area Measurements (BET) on fresh and spent catalysts Thermogravimetric (TGA) Analysis on Spent Catalysts

Carbon formation rate measurements from TGA data CFR =

mass_{coke}

mass_{catalyst}·mass_{carbon,fed}·time

• Stability test at H_2O/C_2H_5OH (r.a.) ratio of 4 and O_2/C_2H_5OH (r.o.) of 0 WHSV (ethanol mass flow rate/catalytic mass) = 61.7 h⁻¹ T=500°C

RESULTS OF STABILITY TESTS

EFFECT OF CATALYTIC FORMULATION: Ru-Ni and Pt-Ni SAMPLES T=500°C $H_2O/C_2H_5OH=4 O_2/C_2H_5OH=0.5$ WHSV=61.7 h^{-1}

HIGEST DURABILITY FOR THE 2Pt10Ni SAMPLE

Low hydrogen yield over the 0.5Ru10Ni and 0.5Pt10Ni catalysts, previously identified as the most active samples

RESULTS OF STABILITY TESTS

REACTION PRODUCTS YIELD

High C₂H₄O production and low CH₄ yield over Ru series and 0.5Pt10Ni catalyst: occurrence of methane decomposition and coke formation

BET Analysis and CFR

Sample	BET Fresh Sample	BET Spent Sample	CFR (g _{coke} ·
	(m²·g⁻¹)	(m²·g⁻¹)	g _{catalyst} ⁻¹ ·g _{carbon,fed} ⁻¹ ·h ⁻¹)
10Ni	230	182	3.9·10 ⁻⁶
0.5Pt10Ni	213	145	8.4·10 ⁻⁶
1Pt10Ni	214	179	2.4·10 ⁻⁶
2Pt10Ni	226	191	1.5·10 ⁻⁶
3Pt10Ni	227	186	2·10 ⁻⁶
0.5Ru10Ni	212	142	7.9·10 ⁻⁶
1Ru10Ni	208	143	5.1·10 ⁻⁶
2Ru10Ni	210	145	5.8·10 ⁻⁶
3Ru10Ni	218	149	6.3·10 ⁻⁶

Pronounced area reduction over the Ru series and the low-loaded samples due to carbonaceous deposits accumulation

Stability of Pt-Ni/CeO₂-SiO₂ and Ru-Ni catalysts for oxidative reforming of ethanol in a fluidized bed reactor

- ✓ Highest ethanol conversion and hydrogen yield over the 2Pt10Ni catalyst and good performance of the noble metals-free sample
- ✓ Worst durability for the 0.5Pt10Ni and 0.5Ru10Ni
- ✓ Increase of C₂H₄O selectivity over the Ru series
- ✓ Decrease of the carbon formation rate in the order 2Pt10Ni<3Pt10Ni<1Pt10Ni<10Ni

FUTURE ACTIVITIES: EVALUATION OF 2Pt-10Ni/CeO₂-SiO₂ CATALYST DURABILITY UNDER RAW BIOETHANOL FEEDING

THANK YOU FOR YOUR ATTENTION

ACKNOWLEDGEMENTS

This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 734561