Paradoxical behavior of organodiselenides: pro-oxidant to antioxidant

Amit Kunwar, PhD

Radiation & Photochemistry Division Bhabha Atomic Research Centre Trombay - 400085 Email – kamit@barc.gov.in

ECCS 2020, 10 - 30th November 2020

Challenge in selenium research

Selenium compounds have gained a lot of interest in therapeutic research "Anti-cancer agent , Neuroprotective agent, Antioxidant, Radioprotective agent"

* Organoselenium compounds exhibit lesser toxicity compared to inorganic selenium

(Int. J. Cancer 1995, 63, 428–434; Arch Toxicol. 2011, 85, 1313-1359; Molecules 2018, 23, 628)

Organodiselenides

R-Se-Se-RR - Alkyl or Aryl group(Organodiselenide)

✓ Pharmacologically relevant class of molecules

✓ Antioxidant activity as glutathione peroxidase (GPx) mimic

✓ Antioxidant activity as substrate of thioredoxin reductase (TrxR)

✓ Pro-oxidant activity leading to toxicity in biological systems

<u>Well known organo-diselenide</u> - Diphenyl diselenide (Ph₂Se₂) Selenocystine (SeCys) Diselenodipropionic acid (DsePA)

(Molecules 2010, 15, 7292–7312; Molecules 2018, 23, 628)

Pro-oxidant activity of organodiselenides

Pro-oxidants - Agents that induce ROS generation and in turn oxidise bio-molecules

Thiol (GSH) oxidase activity : Cell free condition Method : Chemiluminescence (CL)

Pro-oxidant activity of Ph₂Se₂ in MCF7 cells Method : DNA damage by comet assay

Probable mechanism of pro-oxidant activity : *GSH oxidation

✤GSH depletion via conjugation

Oxidation of thiol (-SH) containing proteins

- Solution GPx is an antioxidant enzyme with reduces hydroperoxide to protect the organisms from oxidative damage
- TrxR maintains thiol containing proteins in reduced state by catalyzing reduction of thioredoxin (Trx)

GPx cycle of Ph₂Se₂

(*Neuroscience Letters* 503, 2011, 1–5)

GPx like activity : Cell free condition Method : t₅₀ (min) of GSH consumption by HPLC

TrxR substrate : Cell free condition Method : NADPH (340 nm) decay

 \checkmark Diselenides catalyses reduction of toxic H₂O₂ in to water by using GSH as redox equivalent

✓ Diselenides act as a substrate for TrxR forming intermediates taking part in GPx reaction (Journal of Organometallic Chemistry 720, 2012, 19-25; Neuroscience Letters 503, 2011, 1–5)

Organoselenium compounds studied by our group

Amino acids

Sodium selenite

Biol Trace Elem Res. 2017, 179,130-139

Selenone

Aliphatic diselenides

Diselenodipropionic acid (DSePA)

Che. Res. Toxicol. 2007, 20,1482-1487 Free Radic. Biol. Med. 2010,48,399-410 Arch. Toxicol. 2011, 85,1395-1405 Am J Respir Cell Mol Biol. 2013, 49, 654-661 Eur J Drug Metab Pharmacokinet. 2016, 41, 839-844 Radiotherapy and Oncology 2018, 127: S584-S585 Regulatory Toxicology and Pharmacology 2018, 99: 159-167 Free Radic. Biol. Med. 2019,145,8-19

Selenomethionine (SeMet)

Current Chemical Biology 2013, 7, 37-46 *Radiat. Environ. Biophys.* 2011, 50, 271–280

Aromatic diselenides

2,2'-diselenobis[3-amidopyridine] 2,2'-dipyridyl diselenide

Metallomics, 2017, 9, 715-725 *Journal of Organometallic Chemistry* 2017, 852, 1-7 *New J. Chem.* 2020, 44, 7329-7337. *Metallomics* 2020, 12, 1253-1266.

Selenocystine (SeCys)

Radiat. Environ. Biophys. 2009, 48, 379-384 *Biol Trace Elem Res. 2011, 140: 127-138*

Cyclic monoselenide

3,4-dihydroxy-1-selenolane (DHS_{red})

Biochimie 2018,144, 122-133 *Mutation Research* 2016, 807, 33-46 *Toxicology Research* 2016, 5, 434-445 *Molecules* 2015, 20,12364-12375; *ChemBiochem* 2015,16,1226-1234 **Structure & synthesis of pyridine diselenides**

(Py₂Se₂) Dipyridine dislenide

(Nic₂Se₂) Dinioctinamide diselenide

 \sim Both Py₂Se₂ and Nic₂Se₂ were synthesized in house as per the reported literature

Solution Compounds were characterized by NMR, IR and Mass spectroscopy.

(Journal of Organometallic Chemistry 713, 2012, 42-50; Journal of Organometallic Chemistry 720, 2012, 19-25)

GPx and TrxR activity of Py₂Se₂ and Nic₂Se₂

GPx reaction

$$CuOOH + 2GSH \xrightarrow{DSePA} CuOH + GSSG + H_2O$$

 $NADPH + GSSG + H^{+} \xrightarrow{Glutathione-} 2GSH + NADP^{+}$

TrxR reaction

- ✓ GPx-like activity of Py₂Se₂ and Nic₂Se₂ predominantly follow reduction path
- ✓ GPx and TrxR substrate activities follow order of Nic₂Se₂>Py₂Se₂
- ✓ Reduction of Py2Se2 and Nic2Se2 generate selone as a stable intermediate
- \checkmark Selone of Nic₂Se₂ is more stable compared to that of Py₂Se₂

(Org. Biomol. Chem. 2014, 12, 2404–2412)

Cytotoxicity of Py₂Se₂ and Nic₂Se₂ in different cells

Method – MTT assay

Time point – 48 h Post treatment

Compounds	CHO (Normal ovary epithelium)	WI38 (Normal lung fibroblast)	A549 (Lung carcinoma)	MCF7 (Breast carcinoma)
Py ₂ Se ₂	~6 µM	~8 µM	~5 μM	~5 µM
Nic ₂ Se ₂	>100 µM			~70 μM

 \checkmark Cytotoxicity: Py₂Se₂ > Nic ₂Se₂

✓ Nic₂Se₂ exhibits differential toxicity in tumor versus normal cells

(Metallomics 2017, 9, 715-725; New J. Chem. 2020, 44, 7329-7337; Metallomics 2020, 12, 1253-1266)

Redox modulatory activity of Nic₂Se₂ in normal CHO cells

NIc₂Se₂ (DSNA) treatment – 16 h prior to irradiation by Co⁶⁰ γ -radiation

Method – Biochemical assays; RC – Radiation control

✓ Nic₂Se₂ per se induced reductive environment in cells marked by increase and decrease respectively in GSH/GSSG and ROS levels

 \checkmark Nic₂Se₂ pre-treatment reduced γ -radiation induced oxidative stress

(Metallomics 2017, 9, 715-725)

Radio-protective activity of Nic₂Se₂ in CHO cells

DNA damage – γ -H2AX assay; **Cell viability –** Clonogenic agency **NIc₂Se₂ (DSNA) treatment** – 16 h prior to irradiation by Co⁶⁰ γ -radiation

Nic₂Se₂ pre-treatment protects CHO from γ-radiation induced DNA damage
Nic₂Se₂ pre-treatment protects CHO from γ-radiation induced cell death

(Metallomics 2017, 9, 715-725)

Redox modulatory activity of Py₂Se₂ in lung cancer (A549) cells

Py₂Se₂ treatment – 24 h

Method – DCFDA staining followed by FACS, Biochemical determination of GSH and GSSG

✓ Py₂Se₂ treatment induces reductive stress in A549 cells

(Metallomics 2020, 12, 1253-1266)

Effect of Py₂Se₂ treatment on the activity of thiol and selenoproteins

 ✓ Py₂Se₂ treatment inhibits the activity of thiol and selenoproteins in A549 cells (*Metallomics* 2020, 12, 1253-1266)

Effect of Py₂Se₂ treatment on the DNA damage on apoptosis in A549 cells

Effect of pharmacological modulation on Py₂Se₂ induced apoptosis in A549 cells

R - Aryl group with pyridine ring

✓ Aryl diselenides containing pyridine ring modulates intracellular redox state towards reduction (antioxidant) rather than oxidation (pro-oxidant) side in both normal and cancer cells

✓ The reductive stress mediated by such compounds leads to cytotoxic or apoptotic effect in cancer cells

 ✓ Cellular redox state, level of TrxR and reductive intermediates (selenol versus selone) appear to be the major determinants of the toxicity of pyridine diselenides

Acknowledgement

Dr. A.K. Tyagi (Associate Director, Chemistry Group) Dr. Awadhesh Kumar (HOD, RPCD) Dr. K.I. Priyadarsini (RRF, UM-DAE-CEBS) Dr. V.K. Jain (Director, UM-DAE-CEBS)

BARC colleagues & students

Dr. B. G. Singh Dr. P. Phadnis Dr. S. Dey Dr. V.V. Gandhi Miss P. Verma Mr. Raghuraman