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Abstract: The changes in land surface temperature (LST) concerning time and space are mapped 

with the help of satellite remote sensing techniques. These measurements are used for determining 

several geophysical parameters including soil moisture, evapotranspiration, thermal inertia, and 

vegetation water stress. This study aims at calculating and analyzing the LST of manmade and 

natural features of Doon Valley, Uttarakhand, India. The study area includes the forest range of 

Doon Valley, agricultural areas, and urban settlements. Spaceborne multitemporal thermal bands 

of Landsat 8 were used to calculate the LST of various features of the study area. Split-window 

algorithm and emissivity-based algorithms were tested on the Landsat-8 data for LST calculation. 

The study also explored the effect of atmospheric correction on the temperature calculation. The 

land surface temperature determined using an emissivity based method that did not provide 

atmospheric correction be found to less accurate as compared to the results by the split-window 

method. The LST for urban settlements is higher than the forest cover. A temporal analysis of the 

data shows an increase in the temperature for October 2018. The study shows the potential of the 

spaceborne thermal sensors for the multitemporal analysis of the LST measurement of manmade 

and natural features. 
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1. Introduction 

Remote sensing technique has been widely used in different thematic applications of solid earth, 

ecosystem, water, and cryosphere [1–3] Several modeling approaches and methods have been 

developed to characterize parameters of manmade and natural features [4–7]. Among all remote 

sensing techniques, thermal remote sensing is used primarily for emission-based thermal 

characterization to measure Land Surface Temperature (LST) [8–10]. The applications of land surface 

temperature are quite wide with the inclusion of urban climate, hydrological cycle, and change in the 

climate. The changes in land surface temperature for time and space are mapped with the help of 

thermal remote sensing technique [10,11]. These measurements are used for determining several 

geophysical parameters including soil moisture, evapotranspiration, thermal inertia, and vegetation 

water stress. Due to the wide application of land surface temperature, various methods have been 

developed over the past several years for its estimation [12]. In last few decades several spaceborne 

thermal sensors have been launched for mapping and monitoring of sea surface and land surface 
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temperatures. Several algorithms have been developed to accurately measure the temperature and it 

is found that split-window algorithm (SWA) has been widely used by the scientific community [13]. 

It is very important to have access to correct and reliable estimates of Land Surface Temperature, 

over large temporal and spatial scales. This is due to the vast applications of Land Surface 

Temperature in vegetation monitoring, hydrological applications, global circulation modeling, and 

other environmental applications. If the calculation of LST is not accurate, the results derived from 

it, regarding the above-mentioned applications will consist of errors. In this project, LST is calculated 

for the study area—Dehradun using the split-window algorithm. The prime focus of this work is to 

calculate the LST using spaceborne thermal sensor data and characterization for manmade and 

natural features. 

2. Study Area and Dataset 

To characterize the land surface temperature of manmade and natural features Doon valley was 

selected which includes urban settlement, agricultural fields, and forest cover. 

The study area lies between longitudes 77°34′43″ E to 78°18′22″ E and latitudes 29°56′22″ N to 

31°02′53″ N. The place has a moderate climate as it is located at Himalayan foothills. Temperatures 

in summer are not very high but during winters they can even reach below the freezing point. In 

summers, the temperature range is around 16.7–36 °C whereas in winters it decreases to 5.2–23.4 °C. 

The scene extent and geographic location of the study area is shown in Figure 1. The vegetation cover 

is highlighted in the red color of the false-color composite (FCC) image of the study area. The FCC 

image (Figure 1) for the study area was generated with an infrared, red, and green band of the 

Landsat 8 data, which was acquired on 02 October 2018. Dry riverbeds and urban settlements are 

highlighted in cyan color in the FCC. Dry riverbeds could be easily identified in the study area as 

linear features. The water body is appearing as dark blue color and the agricultural fields are shown 

in light red homogeneous patches. The snow cover over the Himalayan region is visible in white 

color in the North East region of the FCC image of Figure 1. 

 

Figure 1. Location of the study area in the map of India released by the Survey of India and a false-

color composite image of the Landsat 8 data. 

3. Methodology for LST Estimation 

The methodological steps for LST estimation are shown in Figure 2. The first step of the 

methodology involves the Digital Number (DN) to radiance conversion. The brightness temperature 

was calculated using Equation (1) [14]. 
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𝑇𝑏 =
𝑘2

ln ((
𝑘1

𝐿𝜆
) + 1)

 (1) 

where, 𝑘1 and 𝑘2 are constants, their values provided in the metadata file, or user manual, 𝐿𝜆 is the 

spectral radiance calculated using the given Equation (2). 

𝐿𝜆 = 𝑀𝐿𝑄𝐶𝑎𝑙 + 𝐴𝐿 (2) 

Here, 𝑀𝐿 is the Multiband radiance and 𝐴𝐿 is the Add-band radiance, both of them provided 

in the image Metadata. 𝑄𝐶𝑎𝑙  is the digital number. 

 

Figure 2. Methodological flow diagram for LST estimation. 

The split-window algorithm has been used for the calculation of LST. To eliminate the 

atmospheric contribution split-window algorithm takes into account the differential absorption of 

water vapor between two adjacent channels. The channels are centered on 11.0 µm and 12 µm 

respectively. It has been proven that the General Split Window algorithm could accurately determine 

the LST but the errors occur due to perceptible water vapor and Emissivity mainly. Atmospheric 

transmittance and Land Surface Emissivity were the only two required parameters. Due to the 

accuracy and simplicity of the estimation process for input parameters, Qin et al.’s algorithm was 

applied to Thermal Infrared Sensor (TIRS) data [14–16]. The equation used in the split-window 

algorithm to calculate surface temperature is shown in Equation (1) [14,17]. 

𝑇𝑠 = 𝐴0 + 𝐴1𝑇10 − 𝐴2𝑇11 (3) 

Here, 𝑇𝑠  is the LST, 𝑇10  and 𝑇11  are the brightness temperatures for band 10 and band 11 

respectively. 𝐴0, 𝐴1 and 𝐴2  are the three coefficients which are obtained by Emissivity and 

Atmospheric transmittance for both of the TIRS bands, with the use of Equation (4) 

𝐴0 =  𝐸1𝑎10 + 𝐸2𝑎11 

𝐴1 = 1 + 𝐴 + 𝐸1𝑏10 

𝐴2 = 𝐴 + 𝐸2𝑏11 

(4)  

The parameters used in the above set are derived with the help of Equation (5). 

𝐶𝑖 = 𝜀𝑖𝜏𝑖 

𝐷𝑖 = (1 − 𝜏𝑖)[(1 − 𝜀𝑖) ∗ 𝜏𝑖] 
(5) 
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𝐴 = 𝐷10/𝐸0 

𝐸1 = 𝐷11(1 − 𝐶10 − 𝐷10)/𝐸0 

𝐸2 = 𝐷10(1 − 𝐶11 − 𝐷11)/𝐸0 

𝐸0 = 𝐷11𝐶10 − 𝐷10𝐶11 

Here, 𝜀𝑖 is the Emissivity, 𝜏𝑖 is the atmospheric transmittance, and ‘i’ denotes the band number 

[15]. 

3.1. Emissivity 

Emissivity is calculated using the NBEM (NDVI-based) method. For comparison purposes, 

another method- Method of Normalized Emissivity of MNE is also applied. The mathematical 

formula for MNE is given in Equation (6) [18]. 

𝜀𝜆,𝑖 =
𝐼𝜆,𝑖 − 𝑅𝜆

↑ − 𝜏𝜆𝑅𝜆
↓

𝜏𝜆(𝐵𝜆(𝑇𝑀,𝑖) − 𝑅𝜆
↓)

 
(6) 

Here, 𝐼𝜆,𝑖 is the measured radiance, 𝑅𝜆
↑ is the upwelling radiance and 𝑅𝜆

↓ is the downwelling 

radiance, 𝜏𝜆  is the atmospheric transmittance and 𝐵𝜆(𝑇) is the blackbody radiance which can be 

calculated using Equation (7) [14,16]. 

𝐵𝜆(𝑇) =
𝑐1

𝜆5(exp (
𝑐2

𝜆𝑇
) − 1)

 (7) 

Here, 𝑐1  and 𝑐2  are constants with values 1.191* 108𝑤 𝜇𝑚4 𝑠𝑟−1𝑚−2  and 1.439 ∗ 104𝜇𝑚𝑘 

respectively. 𝜆 is the wavelength of band 10 and 11 and T is the maximum of brightness temperature. 

3.2. Atmospheric Transmittance 

There are several constituents present in the atmosphere. Water vapor, 𝐶𝑂2, 𝑂3 and other gases 

are also a part. However, during an atmospheric correction, only water vapor is taken into 

consideration because in the atmosphere the contents of gases are more stable in comparison. Instead, 

the water vapor content has a high degree of variability allowing the atmospheric transmittance to 

depend heavily on it [14]. The equations to calculate transmittance with the help of water vapor 

content (content range—0.5–3 g/cm²) are shown in Equation (8) [15]. 

w = 𝑐2* (𝜏𝑗/𝜏𝑖)
2 + 𝑐1*(𝜏𝑗/𝜏𝑖) + 𝑐0;  𝜏𝑖/𝜏𝑗 = (

𝜀𝑖

𝜀𝑗
)𝑅𝑖𝑗 

           𝑅𝑖𝑗 =∑ (𝑇𝑖,𝑘 − �̅�𝑖)(𝑇𝑗,𝑘−�̅�𝐽
𝑁
𝐾=1 )/∑ (𝑇𝑗,𝑘−�̅�𝐽)2𝑁

𝐾=1  

(8) 

where c0, c1, and c2 are coefficients. N is the number of adjacent pixels (excluding cloud pixels). 𝑇𝑖,𝑘 

and 𝑇𝑗,𝑘 are brightness temperatures for the band i and j respectively at the TOA for the kth pixel and 

w is the water vapor content. �̅�𝑖  and �̅�𝐽 are mean or median brightness temperatures for the N pixels 

for the two bands. 

4. Results and Discussion 

To determine Land Surface Temperature, firstly brightness temperature is calculated for all of 

the images. The second step is to obtain the required parameters, which are Emissivity and 

Atmospheric Transmittance. Lastly, the split-window algorithm is applied to the images. The 

emissivity image as shown in Figure 3a was generated for the Landsat data of 15 October 2017. The 

general value range for every studied image is observed to be about 0.91–0.97. This range indicates 

the presence of water and vegetation as it is proximate to 1. 
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(a) 

 
(b) 

Figure 3. Landsat 8 image-based (a) Emissivity (b) LST for the study area for 15 October 2017 

After the retrieval of all essential parameters, Split-window Algorithm is applied for four 

consecutive years of 2015, 16, 17 and 18. Split-window incorporates the brightness temperature 

obtained from TIRS bands to retrieve LST. The accuracy of split-window algorithm is more reliable 

due to implementation of atmospheric correction to retrieve LST. The LST values were retrieved for 

those scenes of LANDSAT-8 data for which the manmade and natural features were not covered by 

the cloud. Three images for the years 2015 to 2018 were selected as per the availability of the cloud-

free data for September, October, and November. The LST map (Figure 3b) shows the very low 

temperature for snow-covered (black color) areas and very high temperature (yellow color) is 

recorded for the urban area and the agricultural field. Manmade features like urban area and 

agricultural fields showed very high LST and natural features like forest cover and water bodies 

showed moderate to low emissivity (Figure 3b). 

A temporal analysis of the maximum LST of the study area for TIRS bands 10 and 11 are shown 

in Figure 4. The months of September, October and November face a gradual decrease in 

temperature. The first six months of year faces gradual increase in the temperature because of same 

reason of climate change and the approach of summer season. Also, if the land surface temperature 

for September, October and November is observed for over consecutive years, that a very slight 

increase in temperature is seen. It could be easily seen from Figure 4 that the maximum LST was 

observed for September month of the years 2015, 2016, and 2017 but in the band 10 for 2nd October 

2018, it was found that the LST is higher than September 2018. In comparison to the three months of 

the years, 2015 to 2018 LST value recorded for November month is always low. This increase in 

temperature is due to several factors that include manmade anthropogenic and climatic conditions. 

Effect of seasonal change on LST [19] could also be seen in Figure 4. September is a month of monsoon 

season in India and November is the month of winter season. A fall in temperature has been observed 

from September to November, indicating the change in LST, which is due to the change in weather. 
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Figure 4. Maximum LST for the years (a) 2015; (b) 2016; (c) 2017; (d) 2018. 

5. Conclusions 

Land surface temperature is mandatory for the determination of various geophysical processes, 

including evapotranspiration and desertification. To derive the land surface temperature in this 

project Landsat 8 images have been used. It is found that the split-window algorithm seems to be the 

most appropriate approach due to its simplicity and provision for atmospheric correction. The 

inverse relationship between the wavelength and temperature has also been proved with brightness 

temperature as well as the land surface temperature is slightly increased for Band 10 as compared to 

Band 11. Atmospheric transmittance is a factor that causes disrupt in the results of land surface 

temperature and hence split-window algorithm achieves accuracy by providing atmospheric 

correction for a given image. 
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