ECCS 2020 **1st International Electronic** Conference on Catalysis Sciences 10-30 NOVEMBER 2020 | ONLINE

Cux/ZnO-y catalysts. Effect of support modification by high energy milling on the metal-support interaction

Chaired by PROF. DR. KEITH HOHN

📇 catalysts

Authors: Maria Karla López González Luis Eduardo Cadús Maria Roxana Morales

Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Universidad Nacional de San Luis (UNSL), Facultad de Química, Bioquímica y Farmacia, San Luis, Argentina

Introduction

Objective

Subjecting ZnO to high energy milling in order to modify its structural and surface characteristics, to be used as a catalytic support. It is intended to study the Cu-ZnO interaction achieved when the support is ground and compare it with the same system with the support without grinding.

Horizontal section

Rotation of the milling bowl

Materials and Methods

Support and catalysts preparation

vial and balls	WC	ZrO ₂
BPR	35:1	148:1
v rotation (rpm)	300	
t milling (min)	0, 5, 30, 60, 240, 480 y 960	6

impregnation at incipient moisture

Characterization

- X-ray Diffraction (XRD)
- Brunauer-Emmet-Teller (BET) method
- Raman spectroscopy

- Atomic Absorption Spectroscopy (AAS)
- X-ray Photoelectron Spectroscopy (XPS)
- Temperature Programmed Reduction (TPR)

Results and Discussion

ZnO $\longrightarrow \downarrow$ surface area \longrightarrow high energy milling

No diffraction lines \longrightarrow phases containing Cu \longrightarrow incorporation Cu in the ZnO structure \uparrow dispersion \checkmark \downarrow Cu concentration **ECCS** 2020 **1st International Electronic Conference on Catalysis Sciences** 10-30 NOVEMBER 2020 | ONLINE

► DRX

A catalysts

Intensity (a.u)

1st International Electronic Conference on Catalysis Sciences 10-30 NOVEMBER 2020 | ONLINE

ECCS

2020

►DRX

A catalysts

Scherrer and Rietveld Add Catalysts

Catalyst	D (nm)	c/a		Catalyst	D (nm)	c/a
ZnO-0	71.2 🗖	1.6026	• D ZnO-0 > ZnO-z \leftrightarrow milling	ZnO-z	16.8	1.6017
Cu0.2/ZnO-0	44.0	1.6020		Cu0.2/ZnO-z	31.7	1.6020
Cu0.5/ZnO-0	50.7	1.6020		Cu0.5/ZnO-z	28.6	1.6021
Cu1.0/ZnO-0	55.8	1.6020		Cu1.0/ZnO-z	21.1	1.6023

• \downarrow D – c/a when Cu is added

alteration in the host network \rightarrow insertion of Cu

• ↑ D ↑ Cu content

• = $c/a \uparrow Cu content$

limited insertion of Cu²⁺ in the ZnO network (*in line with XRD*)

• ↑ D-c/a when Cu is added

constant incorporation of Cu in ZnO

• \downarrow D \uparrow Cu content

more Cu²⁺ are incorporated (*in line with XRD*)

ECCS 2020	1st In Confe 10-30 NO	ternation erence on vember 2020 0	al Electronic Catalysis Sciences	a na		🛺 cata	lysts MDPI
Catalyst		ξ x 10 ⁻⁴	$\delta \ge 10^{14}$ line m ⁻²		Catalyst	ξ x 10 ⁻⁴	$\delta \ x \ 10^{14}$ line m ⁻²
ZnO-0		15.60	1.97	• ZnO-0 < ZnO-z ↔ <u>milling</u>	ZnO-z	66.06	35.43
Cu0.2/Z	nO-0	25.09	5.16	stresses and defects introduced	Cu0.2/ZnO-z	35.02	9.95
Cu0.5/Z	nO-0	22.00	3.89		Cu0.5/ZnO-z	38.78	12.22
Cu1.0/Z	nO-0	19.98	3.21		Cu1.0/ZnO-z	52.52	22.46

• $\uparrow \xi - \delta$ when Cu is added

change in the microstructure size and shape of the particles

insertion of Cu

• $\downarrow \xi - \delta \uparrow Cu \text{ content}$

nucleation process > incorporation into the structure (in line with XRD, D, c/a)

• $\downarrow \xi - \delta$ when Cu is added

Cu occupy positions in the network \rightarrow stabilize releasing the stress generated \rightarrow milling

• $\uparrow \xi - \delta \uparrow Cu \text{ content}$

more Cu²⁺ are incorporated (in line with XRD, D, c/a)

٠

 $\downarrow S_{BET}$ when Cu is added

Impregnation \rightarrow small agglomerated ZnO particles

• $\uparrow S_{BET} \uparrow Cu content$

Impregnation \rightarrow erode the surface (pH = 5.5 - 6.0)

• $\downarrow |_{E1}/|_{2A1}$ when Cu is added

• $\downarrow I_{E1}/I_{2A1} \uparrow Cu content$

(in line with $\xi - \delta$)

• $\approx S_{BFT} \uparrow Cu \text{ content}$

 \approx S_{BFT} when Cu is added

- $\uparrow I_{E1}/I_{2A1}\uparrow$ when Cu is added
- $\downarrow I_{E1}/I_{2A1}$ Cu content

(in line with $\xi - \delta$)

1st International Electronic Conference on Catalysis Sciences 10-30 NOVEMBER 2020 | ONLINE

Catalyst	O 1s	(eV)	O = /(O = +O =)		
cuturyst	O red	O ads	ids/ (Cads - Cred)		
ZnO-0	530.15	531.67	35.60		
Cu0.2/ZnO-0	530.43	532.07	24.65		
Cu0.5/ZnO-0	530.40	532.30	21.53		
Cu1.0/ZnO-0	530.38	532.34	17.44		

- \uparrow (BE _{Ored}) when Cu is added
- \approx (BE _{Ored}) \uparrow Cu content

ECCS

2020

limited insertion of Cu in the ZnO network (*in line with XRD, D, c/a*)

- \uparrow (BE _{Oads}) when Cu is added and \uparrow Cu
- \downarrow total O_{ads} when Cu is added and \uparrow Cu

↓ Cu is incorporated into the network↑ Cu is adsorbed on the O vacancies

Catalyst	O 1s (eV)		$0 \cdot /(0 \cdot + 0 \cdot)$	
	O red	O ads	$O_{ads}/(O_{ads} + O_{red})$	
ZnO-z	530.07	531.65		24.30
Cu0.2/ZnO-z	530.19	531.85		24.67
Cu0.5/ZnO-z	530.22	531.89		22.03
Cu1.0/ZnO-z	530.38	532.19	J,	17.07

A catalysts

• ↑ (BE _{Ored}) when Cu is added **and** ↑ **Cu**

constant incorporation of Cu in ZnO (in line with XRD, D, c/a)

►XPS

↑ (BE _{Oads}) when Cu is added and ↑ Cu

• \downarrow total O_{ads} when Cu is added and \uparrow Cu

 \uparrow Cu is incorporated into the network \downarrow Cu is adsorbed on the O vacancies

ECCS A catalysts ►RTP **Conference on Catalysis Sciences** 2020 10-30 NOVEMBER 2020 | ONLINE 241 262 Present 2 superimposed signals ٠ \downarrow T ↑ Cu content Supports do not present reduction signals ٠ ntensity (a.u) 200 in the temperature range studied 213 244 272 T(all catalysts) < Tu (CuO bulk)٠ Cu1.0/ZnO-z Cu1.0/ZnO-0 200 strong Cu-support 217 Cu0.5/ZnO-0 Cu0.5/ZnOz 243 Cux / ZnO-z Cu reducibility > Cux / ZnO-0 267 ۲ 223 218 Cu0.2/ZnO-z Cu0.2/ZnO-0 50 100 150 200 250 300 50 300 100 150 200 250 Temperature (°C) Temperature (°C)

1st International Electronic

Catalyst	H ₂ consuption				
Catalyst	Exp.	CuO	Cu ₂ O		
Cu0.2/ZnO-0	26.6	31.4	17.5		
Cu0.5/ZnO-0	67.8	87.5	45.5		
Cu1.0/ZnO-0	109.5	149.6	83.2		

 H_2 consumptions \approx theoretical for reduction of CuO

↑ Cu content

experimental consumptions < theoretical

presence of a low amount of Cu₂O

Catalyst	H_2 consuption				
Catalyst	Exp.	CuO	Cu ₂ O		
Cu0.2/ZnO-z	21.5	25.1	14.0		
Cu0.5/ZnO-z	42.9	70.3	39.2		
Cu1.0/ZnO-z	88.1	120.7	66.2		

 H_2 consumptions \approx theoretical for reduction of Cu_2O

↑ Cu content experimental consumptions > theoretical
↓
presence of a low amount of CuO

Coexistence \rightarrow Cu with both valences

e⁻ mobility that occurs from the support to the metal

► RTP

(in line with XPS)

A catalysts

Conclusions

- High energy milling generates an increase in the specific surface area of the support, and introduces defects and microstresses in the crystalline lattice, making it more reactive than the original crystalline structure.
- The vial and mill balls material has a great influence on the milling time, generating different changes in the solid for the same accumulated kinetic energy.
- The defects introduced in the support by the high energy milling increase the metal-support interaction, and the reducibility of the metal; and Cu insertion could be potentially stabilizing the ZnO lattice, as inferred from the techniques discussed in this work.
- > As a consequence, it is possible a decrease in the sizes of metallic domains and an increase in their dispersion, which will soon be determined by chemisorption of N_2O .
- For Cux/ZnO-z, the CuO/Cu₂O-ZnO-z generated interface could lead to an improvement in the activity, selectivity and stability of this system in the glycerol hydrogenolysis reaction.
- We can conclude that high energy milling is an environmentally friendly technique, and very powerful. It allows modifying the metal-support interactions, which could be reflected in the improvement of the performance of catalytic systems in liquid phase reactions.

ECCS 2020

1st International Electronic Conference on Catalysis Sciences 10-30 NOVEMBER 2020 | ONLINE

Chaired by PROF. DR. KEITH HOHN

Universidad Nacional de San Luis

CONICET

Consejo Nacional de Investigaciones Científicas y Técnicas AGENCIA NACIONAL DE PROMOCION CIENTIFICA Y TECNOLOGICA

