

Application of lithium *n*-butylselenolate in the total syntheses of (+)-Pericosine B, (+)-Pericosine C, (+)-COTC and 7-chloro-analogue of (+)-Gabosine C

Natalia Biduś¹, Piotr Banachowicz¹, Szymon Buda¹

x nataliabidus@hotmail.com

IFaculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków

Introduction

Carbasugars are important carbohydrate analogs in which the ring oxygen is replaced with a methylene group. This change has no significant impact on structure (bonds length, torsion angles, conformation) but strongly biological activity (pharmacokinetics, molecule-enzyme potential of some carbasugars interactions).1 The therapeutic has led to a growing interest in their development and identification.

Pericosines (A-E) are a subclass of carbasugars and they have been shown to display a wide range of interesting biological activities such as significant cytotoxicity against P388 lymphocytic human cancer cells, growth inhibition of tumor cell lines HBC-5 and SNB-75, and inhibition of some enzymes including human topoisomerase II or protein kinase EGFR.² In 1974 (-)-Gabosine C was isolated from a culture broth of Streptomyces filipensis and is identical to a known antibiotic KD16-U1.3 The crotonic ester of (-)-Gabosine C is known as a (-)-COTC and was reported to possess cytotoxic and cancerostatic activity.4,5

In this work, we present our recent studies of the application of the lithium n-butylselenolate as an initiator in tandem seleno-Michael/aldol process in carbasugar synthesis involving D-ribose as a readily available and cheap starting material.6

Results

Further transformation of the carbocyclic core involving a regioselective Steglich esterification or methylation of the secondary hydroxyl group gave rise to protected (+)-COTC, (+)-Pericosine B and (+)-Pericosine C. Deprotection of benzyl ethers with boron trichloride at -78°C gave the titled compounds in satisfactory yields.

Product	Number of steps	Yield [%]
(+)-Pericosine C	2	43
(+)-Pericosine B	2	10
(+)-COTC	4	11
7-chloro-7-deoxy-(+)-Gabosine C	4	17

Methods

The first 6 steps focused on the preparation of linear precursor 3 from D-ribose. The inability to separate pyranoses from furanoses after 3 steps forced us to turn our attention to reagents selective towards primary hydroxyl groups. We chose medium hindered and reactive tert-butyldimethylsilyl chloride. The removal of the TBS-ether with an excess of Olah's reagent was quantitative and allowed obtain the desired 3 in 37% vield over 6 steps from D-ribose.

Oxidation of the primary hydroxyl group with Dess-Martin periodinane gave carbasugar precursor 4 as a mixture of diastereoisomers (E/Z 0.51:1)in a very good yield. The received precursor undergoes a cyclization process induced by n-butylselenolate generated in situ from elemental selenium and *n*-butyllithium. Then consecutive oxidation-elimination steps allowed us to obtain the carbocyclic core 5 in 68% yield as a nearly equimolar mixture of syn and anti diastereoisomers.

The obtained carbocyclic core was transformed to obtain derivatives of compounds with documented biological activity (results).

Conclusions

We have synthesized three known carbasugars: (+)-Pericosine B, (+)-Pericosine C, (+)-COTC (unnatural) and novel derivative 7-chloro-7deoxy-(+)-Gabosine C using n-butylselenolate in intramolecular seleno-Michael/aldol reaction as a key. The developed procedure seems to be a good method for synthesis of the carbasugarcore in general. The newly obtained 7-chloro-analogue of (+)-Gabosine C could be an interesting building block for the preparation of more complex carbasugar structures.

References

- O. Arjona, A.M. Gomez, J.C. Lopez, J. Plumet, Chem. Rev. 107 (2007) 1919-2036
 T. Yamada, M. Iritani, H. Ohishi, K. Tanaka, K. Minoura, M. Doi, A. Numata, Org. Biomol. Chem. 5 (2007) 3979-3986
 K. Tatsuta, T. Tsuchiya, N. Mikami, S. Umezawa, H. Umezawa, H. Naganawa, J. Antibiot. (Tokyo) 27 (1974) 579-586
- Y. Sugimoto, H. Suzuki, H. Yamaki, T. Nishimura, N. Tanaka, J. Antibiot. (Tokyo) 35 (1982) 1222-1230
 H. Chimura, H. Nakamura, T. Tomohisa, T. Takeuchi, H. Umezawa, J. Antibiot. (Tokyo) 28 (1982) 888-901
 O. N. Bidus, P. Banachowicz, S. Buda, Tetrahedron, 2020, 76, DOI 10.1016/j.tet.2020.131392

Acknowledgements

Research financed by the National Science Center: Grant No. 2015/17 / D / ST5 / 01334