1st International Electronic ECCS 2020 **Conference on Catalysis Sciences** 10-30 NOVEMBER 2020 ONLINE

DEVELOPMENT OF PHOTOCATALYSTS FOR THE DEGRADATION OF EMERGING CONTAMINANTS IN WATER

CINDECA

INIFTA

^a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata, Argentina.

CONICET

The presence of emergent contaminants (EC), such as pharmaceuticals, in aqueous media is a serious and unresolved concern. Carbamazepine (CBZ) is a highly persistent antiepileptic drug that is resistant to biodegradation. The effect of CBZ on aquatic life has been evaluated as dangerous¹.

INTRODUCTION

The use of ZnO as a photocatalyst has been widely used for the degradation of contaminants in water due to its low toxicity, low relative cost and wide bandgap. However, it presents a rapid recombination of photogenerated electrons and holes, which added to photocorrosion, could decrease its photocatalytic activity²⁻⁴.

Modifying ZnO with metals allows to overcome these limitations, as well as visible light absorption.

Perform the synthesis and characterization of undoped and Ce-doped ZnO by sol-gel method, at pH 4 and pH 8.

OBJECTIVES

Evaluate the photocatalytic activity of the as prepared materials for the degradation of phenol (as model of organic pollutant) and carbamazepine using UV and visible irradiation.

MATERIALS AND METHODS					
t	Sol-gel method	Characterization • RAMAN • FTIR • SEM • HRTEM	<i>Photocatalytic Activity</i> 3 h of photolysis - Contaminants evolution by HPLC		
	Zinc Oxide. ZhO Zinc oxide doped with 5 at% Ce (pH4): CeZnOa Zinc oxide doped with		 Phenol 1x10⁻⁴ M Carbamazepine (CBZ) 6.3x10⁻⁵ M Catalyst 1g / L 	 Photolysis Rayonet Reactor 8 UV lamps (365 nm) 8 Visible lamps (575 nm) 	

RESULTS AND DISCUSSION

Fig. 1. Raman spectra of ZnO, CeZnOa, and CeZnOb catalysts.

436.3 cm⁻¹ wurtzite phase of ZnO 461 cm⁻¹ cubic structure of CeO₂ fluorite 581 cm⁻¹ defects such as oxygen vacancies and interstitial Zn

Fig. 2. FTIR spectra of ZnO, CeZnOa, and CeZnOb catalysts.

Fig. 3. SEM images of undoped and Ce-doped ZnO

Fig. 4. TEM images of undoped and Ce-doped ZnO samples.

Fig. 5. Percentage of phenol and CBZ degradation with the prepared catalysts after 3 h of irradiation with 575 nm lamps

- Phenol was used as a test compound.
- The higher photocatalytic performance of CeZnOb compared to CeZnOa could be explained taking into account the surface to volume ratio, cerium content and crystallinity.
- Control experiments showed neither contaminants adsorption on the solids nor

Intense band in the range of 600–400 cm⁻¹: contributions from the stretching modes of Zn–O and Ce–O.

ZnO TEM images mainly show polyhedral particles with sizes in the range of 100-50 nm, an essentially crystalline nature is observed. Ce-doped ZnO: ZnO particles with a diameter of ~ 50 nm and smaller particles of size 5 nm, which are identified as CeO_2 , At acid pH some of them forming agglomerates.

CONCLUSIONS

Two Ce-dopped ZnO photocatalysts were prepared at pH 4 and 8 using a simple wet method, with different structural, morphological, and surface properties.

They decrease the photodissolution of zinc in the aqueous media with respect to the undoped catalyst, in the experimental conditions described⁵.

The Ce-doped ZnO catalyst synthesized at pH 8 showed a good photocatalytic performance for carbamazepine and phenol degradation (> 45 %) after 3 h of irradiation with visible light.

Chaired by **PROF. DR. KEITH HOHN**

direct photolysis in the absence of catalysts.

Photodissolution (I	CP/MS)	
Essays	Zn (mg/L) (ε 0,6%)	
ZnO (dark)	2.8	
ZnO (575nm)	9.2	
CeZnOa (575nm)	5.7	
CeZnOb (575nm)	8.6	
CeZnOb+NaOH (pH 10.5) (575nm)	4.8	

REFERENCES

1. López-Pacheco, I. Y. et al. Sci. Total Environ. 690, 1068–1088 (2019).

2. Hariharan, C. Appl. Catal. A-Gen. 304, 55-61 (2006).

3. Shewale, S. A. et al. Indian J. Chem. - Sect. A Inorganic, Phys. Theor. Anal. Chem. 56A, 949–954 (2017).

MDPI

4. Hassan, S. S. M. et al. Adv. Nat. Sci. Nanosci. Nanotechnol. 6, 45012 (2015).

5. Han, J. et al. J. Hazard. Mater. **178** 115–122 (2010).

