

1 Conference Proceedings Paper

Electrospun Silk-Cellulose Composite Nanomaterials using Ionic Liquid Regenerated Films

4 Ashley Rivera-Galletti ^{1,2}, Ye Xue ^{1,3}, Stacy Love ⁴, David Salas de la Cruz ⁴, Xiao Hu ^{1,2,3*}

- ¹Department of Physics and Astronomy, ²Department of Chemistry and Biochemistry, ³Department of
 Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA. ⁴Department of Chemistry, Center
 for Integrative and Computational Biology, Rutgers University, Camden, NI 08102, USA
 - for Integrative and Computational Biology, Rutgers University, Camden, NJ 08102, USA * Correspondence: Email: hu@rowan.edu
- 8 9

10 Abstract: Electrospinning is a widely used technique to draw recalcitrant biopolymer solutions into 11 micro to nanoscale materials in a simple and economical way. The first focus of this research 12 involved using ionic liquids as a non-volatile solvent for natural insoluble biopolymers such as silk 13 and cellulose (or cellulose derivatives). Compared to traditional organic solvents, ionic liquids can 14 dissolve the biopolymers without altering the molecular weight of the biopolymer. The second focus 15 of this research explored the dissolution of IL-regenerated composites into organic solvents and 16 directly electrospun to produce composite nanomaterials. Various ratios of silk-cellulose bio-17 composite films regenerated from ionic liquids were used as the raw materials and sequentially 18 dissolved/dispersed into Formic Acid-CaCl₂ solution in order to initiate electrospinning of silk-19 cellulose nanomaterials. In this study, 1-ethyl-3-methylimidizolium acetate (EMIMAc) ionic liquid 20 was used and the regenerated films were coagulated in baths of EtOH or water. Because of the 21 variability of ionic liquids, the nanomaterials produced using this technique have unique and 22 tunable properties such as large surface area to volume ratios and low structural defects. FTIR and 23 SEM results suggest that the structure and morphology of the final nanosized samples becomes 24 more globular when the biopolymer composition ratio has increased cellulose content. TGA results 25 demonstrated that the electrospun materials have better thermal stability than the original films. 26 This two-step electrospinning method, using ionic liquid as a non-volatile solvent to first dissolve 27 and mix raw natural materials, may lead to extensive research into its biomedical and 28 pharmaceutical applications in the future.

29 Keywords: Ionic Liquids; Electrospinning; Silk; Cellulose; Biomaterials

30 3.2. Figures, Tables and Schemes

The 1st International Electronic Conference on "Green" Polymer Materials 2020, 5-25 November 2020

Figure 1. FTIR spectra comparing EMIMAc generated films and their electrospun nanomaterials in the
 regions of 1500-1800 cm⁻¹ and 800-1200 cm⁻¹.

- 34Acknowledgements: This study was supported by the National Science Foundation, DMR (1809354 and351809541). The authors would like to thank Bailey Blessing from Rutgers-Camden University for her assistance.
- 36 A special thanks to the Journal Polymers (MDPI).
- 37 © 2020 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).