

ASEC 2020 1o-30 NOVEMBER 2020 JONLINE

ULTRASONICALLY-EXTRACTED MARINE POLYSACCHARIDES AS POTENTIAL GREEN ANTIOXIDANT ALTERNATIVES

Hanaa Essa

under supervision

Assoc. Prof. Mayyada El-Sayed

Prof. Dr. Mohamed Abdelfattah

Chaired by PROF. DR. TAKAYOSHI KOBAYASHI

H applied sciences

Outline

- Background
- Aim of work
- Methods
- Results and Discussion
- Conclusion
- Future Work

Background

WHY NATURAL ANTIOXIDANT ALTERNATIVES ?

Tooth decay

• https://kids.frontiersin.org/article/10.3389/frym.2019.00051.

• https://www.123rf.com/photo_58669218_stock-vector-soda-and-lollipop-bully-toothsweets-provoke-dental-caries-concept-vector-illustration.html. Hanaa Essa

NATURAL ANTIOXIDANTS

• Zhong, Q.; Wei, B.; Wang, S.; Ke, S.; Chen, J.; Zhang, H.; Wang, H. The Antioxidant Activity of Polysaccharides Derived from Marine Organisms: An Overview. *Mar. Drugs* 2019, *17*, 674.

Aim of work

- Investigation of ultrasonic assisted extraction of sulfated polysaccharides (SPs) from the different marine species.
- Chemical characterizations of these extracts.
- Structure elucidation for these extracts based on FTIR spectroscopy.
- Testing these extracts as alternative natural antioxidants using DPPH scavenging free radical test.

Methods

Results and Discussion

Type of UAE-SPs	Yield %
GU-SPs	5.50 ± 0.25
RJ-SPs	0.36 ± 0.04
M-SPs	3.52 ± 0.94

Function groups based on FTIR spectra

Wavelength, cm ⁻¹	Function groups	RJ-SPs	GU-SPs	M-SPs
3500-3400	OH group	\checkmark	\checkmark	\checkmark
1600-1420	Uronic acid and phenolic groups	\checkmark	\checkmark	\checkmark
1260-1258	Ester Sulfate group	X	\checkmark	\checkmark
1088-1012	Acidic polysaccharide	\checkmark	\checkmark	\checkmark
963-927	Glycosidic linkage	\checkmark	\checkmark	\checkmark
850-845	Galactose sulfate group	\checkmark	\checkmark	X

Constituents of sugars by mole%, for RJ-SPs, GU-SPs and M-SPs. Based on HPLC analysis

Types of Monosaccharides	RJ-SPs	GU-SPs	M-SPs
Glucose	94.04	6.55	24.51
Galactose	0.10	3.53	17.46
Glucuronic acid	0.16	89.92	7.65
Xylose	2.14	NA	1.29
Mannose	3.51	NA	0.16

Conclusion

- SPs of the marine organisms *U. lactuca*, *J. rubens* and *A. marina*, were extracted using ultra sonication.
- SPs of *A. marina* exhibited the highest carbohydrate content 44 ± 1 %.
- SPs of *J. rubens* were characterized by the highest phenolic content; $132.6 \pm 2.5 \text{ mg GA/g}$.
- HPLC analysis showed that the SPs of *J. rubens* and *A. marina* have glucose as their major sugar constituent comprising 94.04% and 24.51.
- SPs of *A. marina* showed the highest antioxidant activity at the two applied concentrations which indicates that its SPs could be utilized as antioxidant alternatives.

Future work

Synthesizing nanoparticles using these SPs extracts.

≻Testing effect of NP-extracts on plant growth.

Acknowledgements

YEARS

- Assoc. Prof. Mayyada El-Sayed
- Dr. Dalia Rifaat
- Prof. Dr. Mohamed Abdelfattah
- Miss Hania Guirguis
- Chemistry Department at the American University in Cairo

hanaa@aucegypt.edu