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Abstract: We establish a statistical-measures approach to describe the spectral-spatial analysis of
the dynamical atom-field couplings associated with two-pair of pulses propagation in multilevel
atomic media. The statistical measures are functional measures that depend on the collective coupling
as well as on the eigenvalues of the Nonlinear-Liouville equation. The Nonlinear-Liouville equation is
a nonlinear evolution equation which is a second-order differential equation in time. It describes the
multi-wave mixing process within the atomic system, as well as coherent oscillations. The proposed
spectral estimators prevail spatial multi-peak structure, which depends on the reduction or the
enhancement of an effective Rabi-frequency. Decomposition of collective oscillations provides
an intuitive guess to special-weight of the field’s area. We introduce two functional wavelets to
simulate the atomic polarization response. One of these functionals exposes the dependence on the
multi-component sine-Gordon equation for the atomic polarization, which is adequate at relatively
small propagation distances. The second one is composed of combined sine and cosine functionals
on the area of the fields. The cosine functional reflects the significance of the atomic inversion on
the polarization response to electromagnetic field excitations. The proposed functional-wavelets
inducts new sources for soliton features to the transition-radiation propagation associated with
Maxwell-Bloch equations.

Keywords: hyperfine structure; Coupling Constants; spectral estimators; nonlinear-liouville equation;
combined sine-cosine-gordon equation
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1. Introduction

Recently, we have introduced a dynamical-graph-model (DGM) to simulate short pulses
propagation in multilevel atomic media [1]. However, certain aspects of the propagation dynamics
are still unresolved up-to-date. Specifically, the form of the atomic polarization response as the
pulse spatially stabilize in its area or energy. The problem is analytically intractable due to the
induced multi-wave mixing (MWM) processes associated with strong field excitations [2]. We intend
to describe two-pair pulses propagation in gaseous media, such as 87Rb vapors with a nuclear
spin 3/2. The excitation dynamics of a four-level atomic media studied in different connections.
In the Schrödinger representation, Sharma et al. discussed the temporal behavior of the atomic
populations under intense laser fields [3,4]. Gong and Rice discussed a five-level four-pulse extended
stimulated Raman adiabatic passage (STIRAP) scheme to control the population transfer branching
ratio between two degenerate target states [5]. Hioe et al. investigated the adiabatic solitary-wave
solutions of the three- and N-level atomic systems, where several conditions imposed on the interaction

Proceedings 2020, 2020, 6; doi:10.3390/proceedings2020010006 www.mdpi.com/journal/proceedings

http://www.mdpi.com/journal/proceedings
http://www.mdpi.com/journal/proceedings
http://www.mdpi.com
https://orcid.org/0000-0002-9235-7116
https://asec2020.sciforum.net/.
http://www.mdpi.com/2504-3900/2020/1/6?type=check_update&version=1
http://dx.doi.org/10.3390/proceedings2020010006
http://www.mdpi.com/journal/proceedings


Proceedings 2020, 2020, 6 2 of 10

parameters [6,7]. Grigoryan et al. obtained the adiabatic conditions for transparency of short pulses in
multilevel atoms using the method of quasi-energies [8]. The coupling constant behavior of eigenvalues
of Zakharov-Shabat systems has been reported [9] (and references therein).

2. Theoretical Description

This work presents a theoretically-based model for polychromatic field excitation of multilevel
atoms generated by the hyperfine structure (hf). As an example we consider the D1-line,
i.e., the transition 5 2S1/2 − 5 2P1/2 in 87Rb atoms. The multilevel structure is depicted schematically
in Figure 1, with its four-level bare states. The kets |1〉 = |5 2S1/2, F1 = 1〉, and |2〉 = |5 2S1/2, F2 = 2〉
represent the ground hf states. While |3〉 = |5 2P1/2, F3 = 3〉, and |4〉 = |5 2P1/2, F4 = 2〉 denote the
excited hf states. The number Fα denotes the total angular momentum quantum number associated
with hf level with a level index α, and α = 1, . . . , 4. The fields with Rabi frequencies Ω13, and Ω14

are tuned to the optical transitions 1↔ 3, and 1↔ 4, respectively. In addition, the fields with Rabi
frequencies Ω23, and Ω24 connect the transitions 2↔ 3 and 2↔ 4, respectively.

F1 = 1 >

F2 = 2 >

F4 = 2 >

F3 = 1 >

5 2S1/2

5 2P1/2

Ω13

Ω14Ω24

Ω14

Figure 1. Energy level diagram of 87Rb D1-line including hyperfine structure. The Rabi frequencies Ωij

couple the dipole allowed transition |Fi〉 ⇔ |Fj〉, where i and j denote the level label with i = {3, 4},
and j = {1, 2}, respectively.

The state of the dressed atom is described by the Liouville-von Neumann type equation
(LvNME) for the reduced density operator in the Liouvillan product space [10]. We have developed
Fiutak and van Kranendonk approach for fine structure interaction of light with matter [11] to
hyperfine structure interaction. Following our previous papers, we shall work using relative units.
The relative retarded time in a frame moving with pulse is τ = γ(t − z/c). The dimensionless
spatial variable is given as ζ = α

′
(z + ct). Where t is the time, c is the velocity of light, z is the

spatial variable, and α
′

is the absorption coefficient of one of the pulses at the injection point [12].
The atom-field coupling v is defined as v = drE

2
√

3h̄
, where dr is the reduced dipole moment of the

optical transition and E is the electric field amplitude. The Rabi frequency is related to atom-field
coupling by the relation: Ω =

√
8v. The relative atom-field coupling becomes v = v/γ, and γ

is the spontaneous decay rate of the atomic excited state P1/2. The Rabi frequency is related to
the light intensity I and the saturation intensity Isat by I/Isat = 2Ω2/γ2 equality [13]. We have
28 density matrix components (DMC) ρ

(Fm)
αβ associated with the D1-line taking into account the

hf structure. The labels α and β take values from 1 to 4. The labels F and m denote the tensor rank,
and the magnetic quantum number, respectively. The DMC are normalized subjected to the
trace metric condition Trρ =

√
3ρ

(00)
11 +

√
5ρ

(00)
22 +

√
3ρ

(00)
33 +

√
5ρ

(00)
44 = 1. Let us briefly mention

the relevant DMC. There are four components of rank zero, {ρ(00)
11 , ρ

(00)
22 , ρ

(00)
33 , ρ

(00)
44 }, which are

proportional to the atomic level populations. The components with a first rank, {ρ(10)
31 , ρ

(10)
41 , ρ

(10)
32 , ρ

(10)
42 },
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refer to the atomic coherence. The components, {ρ(20)
21 , ρ

(20)
43 }, represent the lower and upper Raman

coherence, respectively. The components, {ρ(20)
11 , ρ

(20)
22 , ρ

(20)
33 , ρ

(20)
44 }, represent the alignment of the

four-hf states. There are three components of the third rank, {ρ(30)
42 , ρ

(30)
32 , ρ

(30)
41 }. These elements

correspond to the correlations between the upper (3,4) and lower (2,1) hf levels. Finally, we have
the hexadecapole components for the fourth and second hf levels as ρ

(40)
44 , and ρ

(40)
22 , respectively.

The magnetic quantum number m = 0, as we consider linear polarization. We are interested in the
resonant pulse propagation. Therefore, lower hf splitting, ∆ω21, is compensated by the frequency
difference between the fields Ω31 and Ω32. The upper hf splitting, ∆ω43, is compensated by the
frequency difference between the fields with Rabi frequencies Ω42 and Ω32. The two two-photon in
resonance conditions will enable us to maintain a well-defined area for the field’s envelope, as we
have zero initial phases. We shall assume a t2-Gaussian shape for the injected pulse’s envelope in the
form v(t) = 64

√
2πv0/27(t/Tp)2 exp[−8/9π(t/Tp)2], where v0 is the mean amplitude of the pulse,

and Tp its time duration. The time evolution of the DMC is listed in [10]. The reduced Maxwell-field
equations in a frame moving with the pulse can be written as:

∂v13(ζ, τ)/∂ζ = −ρ
(10)
13 (ζ, τ), ∂v14(ζ, τ)/∂ζ = ρ

(10)
14 (ζ, τ),

∂v23(ζ, τ)/∂ζ = −ρ
(10)
23 (ζ, τ), ∂v24(ζ, τ)/∂ζ = ρ

(10)
24 (ζ, τ).

(1)

In the following, we describe the atom-field coupling associated with the multilevel
system considered.

3. The Effective Statistical-Weight for Dynamical Atom-Field Coupling in Two Pair
Pulses Propagation

The Maxwell-Bloch (MB) equations describe the dynamics of two-pair of pulses propagation [10].
We shall write these equations in matrix form as

∂tΥ(z, t) = L(ṽ(z, t))Υ(z, t), (2)

where ṽ(z, t) = {v13(z, t), v14(z, t), v23(z, t), v24(z, t)} stands for atom-field couplings associated with
the double-Λ system. The components of Υ(z, t) at fixed spatial point are the DMC of the type ρ

(F)
αβ

where F denotes the rank of the tensor. The matrix L(ṽ(z, t)) stands for the matrix of coefficients.
Equation (1) presents the reduced Maxwell-field equations. The system Equations (1) and (2) forms
the reduced Maxwell-Bloch equations (RMB). We can arrange the second-order derivative of Υ(z, t)
w.r.t time to be the Nonlinear-Liouville equation (NLLE) as

∂2
ttΥ(z, t) =M(γvα(z, t), vα(t)vβ(z, t), ∂tvα(z, t))Υ(z, t), (3)

andM is the coefficient matrix of ρ
(k)
αβ (t) in Υ(z, t). The matrixM depends on the fields, and its first

derivative w.r.t time as well as two-wave mixing. Let us establish the first-rank coherence-tensor
X(1m)(t). It comprises of the components ρ

(1m)
13 (t), ρ

(1m)
14 (t), ρ

(1m)
23 (t), and ρ

(1m)
24 (t). The coherence-tensor

can be written as
X(1m)(t) = (ρ

(1m)
13 (t) ρ

(1m)
14 (t) ρ

(1m)
23 (t) ρ

(1m)
24 (t))T, (4)

where T denotes here the transpose. Let us consider the case of constant couplings in space and time.
The second-derivative of the coherence tensor becomes

∂2
ttX

(1m)(t) = Ω(ṽ) X(1m)(t), (5)

and Ω(ṽ) is the MWM tensor.
The time evolution of the coherence-tensor is influenced by the storage-tensor components, which

acts as a source terms in the time development of the coherence-tensor. Free dipole oscillations are
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obtained when both longitudinal and transverse relaxation rates vanished, i.e., γ = 0, and Γ = 0.
In deriving the second-derivative of the coherence-tensor, we shall ignore contributions from Raman
coherence and dissipative second-rank tensors ρ

(20)
αβ . Additionally, we ignore contributions from

third- and, fourth-rank tensors. The influence of these elements is treated subsequently. The elements
of the MWM tensor Ω(ṽ) are quadratic in Rabi frequencies. Since it contains the products vαvβ.
The diagonal matrix elements of Ω(ṽ) are composed from summation over quadratic terms as ∑α v2

α.
While off diagonal matrix elements contain the MWM, i.e., terms like ∑α,β vαvβ, where α 6= β. It is
difficult to find eigenvalues of the MWM matrix for Ω(ṽ). Therefore, it is instructive to consider the
case when all the frequencies are equal in which vα = v. In this special case, the coefficient matrix
contains one factor, simply v2 and can be diagonalized. The eigenvalues of the MWM matrix are

λ =

{
−8v2,−8v2,−8v2,−16v2

5

}
. (6)

We have obtained two distinct definitions for the statistical-weight of the pulse’s area as

κ =

{√
8,

4√
5

}
. (7)

The justification of these values will be tested across propagation and stabilization of the area,
as we did in our earlier work [10]. Thus, it is possible to assign −λ/v2 to the statistical-weight
of the energy of the pulse in the presence of relaxations and whenever we have real eigenvalues,
as the singular-value decomposition technique is adopted. Then, the effective measure for the
statistical-weight for the pulse’s area can be written as

κe f f (ζ) = [λ(ζ)/v2(ζ)]1/2. (8)

We emphasize that the definition of κe f f (ζ) may generalize the atom-field coupling constant
concept to one which depends on the atomic relaxations. In fact, the atom-field coupling is a static
property while κe f f (ζ) is a dynamic coupling. The dynamic coupling reflects the influences of the
pulse shape, and its time-derivative as well as the atomic relaxations. The foregoing analysis shows
that the fundamental frequency λ1, that has the biggest real eigenvalue, predicts the presumed
statistical-weight for the area of the fields at z = 0. That is, where the fields are equally, initially.
This means that

λ1

8v2 = 1. (9)

Thereafter, Equation (9) defines an effective Rabi frequency for the system of double-Λ excitation.
This is in agreement with our previous result Ω(ζ, τ) = κv(ζ, τ), and κ =

√
8, presented in [10].

However, we have found that it is true only for stable area propagation and for one transition only,
that is |F1 = 1〉 ↔ |F3 = 2〉 transition.

We define the spatial mean-coupling associated with each pulse corresponding to its optical
transition as

vα(z) =
∫

vα(z, t)2dt∫
vα(z, t)dt

. (10)

The mean-energy for each pulse is given by v2
α(z). Therefore, the reduced mean-energy at a given

spatial point z is given as

Ωr(z) = v2
eq(z) = v2

13(z) + 5[v2
14(z) + v2

23(z) + v2
24(z)], (11)

for the composed system. Consequently, we can define a spatial functional-measure concerning
dynamical statistical-weight of the pulse’s area as the following
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Kλmax (z) = [
maxt λ(z, t)

v2
eq(z)

]1/2, (12)

and λ(z, t) represent the eigenvalues of the matrixM. In general, well shall use the singular-value
decomposition technique to obtain the eigenvalues λ(z, t). The maximum value is running over
the distribution of eigenvalues along time, which guarantees a single value at any spatial point z.
The flatten tensor Υ(z, t) is composed of 19 components, as we have considered resonant pulses
propagation and the fields are assumed to be initially real. The singular-value decomposition
technique provides us with the maximum eigenvalue at any instant as the first eigenvalue. The spatial
statistical-weight of the area of the collective fields then becomes

κ(z) = Kλmax (z). (13)

On an energy-based perspective, the spectral estimates Kλ(ζ) are presented in Figure 2 for
different eigenvalues in the course of propagation. The spectral estimates associated with the
fundamental eigenvalue expose finite sharp peaks in the course of propagation. The peaks correspond
to the reduction and the enhancement of the mean-field energy of the composed system. Both reduction
and enhancement of the mean-field energy contribute to formation of peaks. The spectral estimators
Kλ16(ζ) up to Kλ19(ζ) are small, and not shown. The radiation transitions may enhance the interference
through terms like vα(ζ, τ)vβ(ζ, τ). The spectral estimators Kλ(0) at the injection point display values
close to unity for the first ten eigenvalues. It is in consequence of our analytical results presented
in Equation (9). The peak structure is smeared for small eigenvalue measures, such as Kλ15(ζ).
The reduction of effective Rabi frequency, veq(ζ), does not completely control the behavior of the
functional measures. Therefore, it is instructive to deal with other measures which reflects the statistics
of the temporal distribution of eigenvalues. It is to be noted throughout the formalism we use the
spatial-temporal point representation (z, t). For numerical illustrations we use (ζ, τ) instead. Let us
turn to other functional measures. The second functional-measure is based upon the standard deviation
of the temporal eigenvalues as

K(s)
λ (z) = [

SDτ(λ(z, t))
v2

eq(z)
]1/2, (14)

and SDτ stands for the standard deviation of eigenvalues w.r.t times and at a given spatial point.
The third functional measure is based upon the standard deviation of the auto-correlation function on
the temporal eigenvalues at a given spatial point as

K(sc)
λ (z) = [

SDt[corrt(λ(z, t))]1/2]

v2
eq(z)

]1/2, (15)

and corrt stands for the auto-correlation function on the temporal eigenvalues. Figure 3 shows
comparison between the absorption peaks for different measures. Among these measures,
only the K1(ζ) measure matches the unity requirement at the injection point ζ = 0 for the
fundamental frequency. The increase of K(s)(ζ) and K(sc)(ζ) with distances indicate that the temporal
eigenvalues are distributed over a wider range of values. This increase of K(sc)(ζ) in the course
of propagation is continued with a little drop as the double-Λ system is collapsed into an upper
V2 subsystem containing the hyperfine states |F2 = 2〉, |F3 = 1〉, and |F4 = 2〉. The measure K(sc)(ζ)

reflects more spreading of eigenvalues about its mean, since K(sc)(ζ) > K(s)(ζ).
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Figure 2. Spectral dependence of the effective statistical-weight for dynamical atom-field coupling
on eigenvalues in the course of propagation. The black line presents the reduced mean-energy of the
compound system Ωr(ζ) = v2

eq(ζ) at spatial point ζ.
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1.5
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Figure 3. Spatial dependence of the effective statistical-weight for dynamical atom-field coupling.
Three different statistics on eigenvalues are shown depending on the maximum eigenvalue K1(ζ),

the standard deviation of the distribution of eigenvalues K(s)
1 (ζ), and the auto-correlation

function K(sc)
1 (ζ), respectively.

4. Multimodal Functional Optimization of the Atomic Polarization

The dynamics of coherent excitation of the two-level atom is inevitably connected to the
sine-Gordon (SG) equation [14] (and references therein). The SG equation relates the polarization
response of the atomic medium to the electromagnetic field excitation. In this paper, we propose
a damped sine-Gordon equation for the atomic polarization as Trρ is conserved, and Trρ2 ≤ 1.
Recently, we analyzed the propagation of short optical pulses [10]. The soliton-like behavior at a stable
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positions of the area was discussed. Additionally, the subdivision of the total Bloch vector into its four
two-level atoms (TLA) components also demonstrated. In Section 3, we have presented the spectral
analysis of the atom-field couplings in the course of propagation. Therefore, we may extend the issue
of SG equation to the case of multilevel atoms. Especially, at least near the injection point ζ = 0. We can
proceed further to express the atomic response in terms of sine and cosine functionals on dynamical
couplings. We attempt in this section to describe the spatial dependence of the polarization amplitude
for each TLA in the compound system. Thus, our optimizing procedure accounts for the calculation of
a space-dependent polarization amplitude multiplied by a trigonometric functional on the optimized
pulse’s area. In our study, we solve the initial-value problem of Bloch equations as the atoms are
initially at the first hyperfine level, i.e., n1(0, 0) = 1. The four exciting fields vα(0, τ) have the same
mean-amplitude v0, and mean-duration Tp. We attempt to study short pulses propagation in which
γTp = 0.1. Which ensures that the upper hf splitting is well-resolved. Moreover, the pulses have the
same area as θα(0) = 7.8π. It is instructive to look for the atomic coherence in terms of damped SG
equation as the field stabilizes in the course of propagation

ρ
(1m)
14 (ζ, τ) ≈ x1(ζ) exp(−Γτ) sin(x2(ζ) ϑ14(ζ, τ)), (16)

where the time-dependent field area ϑ14(ζ, τ) up to a time τ is given by

ϑα(ζ, τ) =
√

8
∫ τ

t0

vα(ζ, τ′)dτ′. (17)

Let X(d)(ζ) = [x1(ζ), x2(ζ), ..., xd(ζ)] denote the estimate coefficients with dimension d,
and ε(d)(ζ) denotes the squared 2-norm value of the residuals at the spatial point ζ. At ζ = 0,
we obtained two parameter estimation values and error as

X(2)(0) = [x1, x2],
= [−0.2635, 1.0006],

ε(2)(0) = 0.0019.
(18)

Figure 4 presents a comparison between the numerical coherence ρ
(10)
14 (t), and the predicted

one ρ
(p)
14 (t), as estimated by Equation (16) with two optimization coefficients. We can improve our

optimization utilizing the target function as composed of two different trigonometric functionals with
different weighting parameters

ρ
(1m)
14 (ζ; τ) ≈x1(ζ) exp(−Γτ) sin(x2(ζ) ϑ14(ζ, τ))+

x3(ζ) exp(−Γτ) cos(x4(ζ) ϑ14(ζ, τ))− x3(ζ)
(19)

The approximation presented by Equation (19) gives the weight parameters and the residual sum
of squares (RSS) as

X(4)(0) =[−0.2646, 1.0002, 0.0017, 0.9387],
ε(4)(0) =4.910−4.

(20)

Figure 5 characterizes the atomic coherence corresponding to 1 ↔ 4 transition through the
two pair pulses interaction with the four-level atom and exposing four peaks, which signifies the
8π excitation. The vector X(z) reflects the space-dependent amplitude of the atomic polarization
corresponding to that transition. It is instructive to maintain contributions of other dipoles on the one
understudy. Therefore, we may write the optimizing modal functional as
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pr(ζ, τ) = x1(ζ) sin(x2(ζ)ϑ2(ζ, τ)) + x3(ζ) sin(x4(ζ)ϑ1(ζ, τ))+

x5(ζ) sin(x6(ζ)ϑ3(ζ, τ)) + x7(ζ) sin(x8(ζ)ϑ4(ζ, τ))+

x9(ζ) cos(x10(ζ)ϑ2(ζ, τ))− x9(ζ) + x11(ζ) cos(x12(ζ)ϑ1(ζ, τ))− x11(ζ)+

x13(ζ) cos(x14(ζ)ϑ3(ζ, τ))− x13(ζ) + x15(ζ) cos(x16(ζ)ϑ4(ζ, τ))− x15(ζ)

(21)

At the stable area position such as ζ = 404 where the area of the propagated pulses takes the
values θα(ζ) = [6.5463, 8.0130, 8.8201, 5.5419] in π units. The coefficients and error difference between
the predicted values according to the modal functional and the numerical values are

X(16)(404) =[−0.1973, 0.9828,−0.0700, 1.0858,−0.0667, 0.8221, 0.0679, 1.0534,
− 0.0084, 1.6820, 0.0678, 1.0471,−0.0945, 0.8887, 0.0328, 1.0444],

ε(16)(404) = 0.0134.
(22)

10-4 10-3 10-2 10-1 100 101

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

=0,   =7.8002

(p)
14

( )=x
1
 exp(- )) sin(x

2 2
( ))

x
1
=-0.26345

x
2
=1.0006

Figure 4. The temporal dependence of the atomic coherence for both numerical ρ
(10)
14 (τ), and predicted

ρ
(p)
14 (τ) component at the spatial point ζ = 0.

We can decrease the RSS value in using the modal functional as spline functions
defined on four-time sections, as an example. The maximum RSS arises in our modal
functional for simulation large time behavior, where the predicted modal functional
exposes maximum of interference between dipoles. It is to be noted that Xeven =

[0.9828, 1.0858, 0.8221, 1.0534, 1.6820, 1.0471, 0.8887, 1.0444] distributed around unity which shows
the statistical-weight of the area is close

√
8. In addition Xodd shows negative values for the starting

amplitude which characterizes the absorption for small times and preserves the symmetry through
the prolonged distance. The study of functional fields [15] due to all-optical transitions is of great
importance for understanding the local stability of soliton-like solutions of RMB equations. Our study
explores practically the “modal superposition principle” [16] in terms of functionals.



Proceedings 2020, 2020, 6 9 of 10

10-4 10-3 10-2 10-1 100 101
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

=404,   
2
=8.013

Figure 5. The temporal dependence of the atomic coherence for both numerical ρ
(10)
14 (τ) and predicted

ρ
(p)
14 (τ) component at the spatial point ζ = 404.

5. Discussions

We have facilitated an energy-based estimation framework to obtain spectral dependence
of the dynamical atom-field coupling associated with short pulses propagation in multilevel
atomic media. Therefore, we introduced a nonlinear evolution equation, such as the nonlinear-Liouville
equation (NLLEQ). It describes the evolution of the mutual interference resulting from
frequency-mixing of the transition-radiations along different pathways. Moreover, it involves the
amplitude of the energy of the fields, directly, and without the inclusion of Maxwell-fields equations.
The proposed estimators are functionals on the pulses mean energy and the relevant eigenvalues
of the NLLEQ. The spectral analysis of these estimators shows multiple peaks. The structure of the
peaks are devoted to the reduction and enhancement of the pulses mean energy. The polarization
responds spatiotemporally through amplitude and frequency modulations of functionals on the area
of the fields. Near to the injection point of pulses into the medium, we have shown that the optimized
polarization displays uni-modal functional on the field’s area associated with optical transitions
1 ↔ 4. The uni-modal functional displays the sine-Gordon equation for the atomic polarization.
The impact of neighboring transitions on the target polarization are significant for other transitions
that is not connected with the ground hf level where the population is assumed to be unity, initially.
Therefore, we may expect that the atomic polarization displays multimodal functionals in the form of
multi-component sine-Gordon equation corresponding to the relevant optical dipoles. At locally stable
positions of the pulse area, the multimodal polarization shows the relevance of multi-component sine-
and cosine-Gordon equation with appropriate space-dependent constant to ensure preserving the
initial condition. We have considered these functionals as wavelets. The presence of cosine functional in
wavelets reflects the impact of the atomic inversion on the optimization of the multimodal polarization.

Conflicts of Interest: “The author declare no conflict of interest”.
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Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute SG Sine-Gordon Equation
LvNME Liouville-von Neumann equation RMB Reduced Maxwell-Bloch
NLLE Nonlinear-Liouville HF Hyperfine structure
DGM Dynamical-graph-model DMC Density matrix components
MWM Multi-wave mixing RSS Residual sum of squares
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