

EFFECT OF HEAT TREATMENT ON SMOOTHIE QUALITY BY RESPONSE SURFACE METHODOLOGY

Joaquina Pinheiro¹*, Diana I. Santos², Elsa M. Gonçalves^{3, 4}, Marta Abreu^{2,3}, Margarida Moldão-Martins²

Instituto Nacional de ¹MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal; joaquina.pinheiro@ipleiria.pt or joaquina.pinheiro@gmail.com (J.P.) Investigação Agrária e Veterinária, I.P. ²LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia Universidade de Lisboa, 1349-017 Lisboa, Portugal; dianaisas@gmail.com or dianaisasantos@isa.ulisboa.pt (D.I.S.); <u>marta.abreu@iniav.pt</u> (M.A.); <u>mmoldao@isa.utl.pt</u> (M.M.-M.)

methods

and

Material

³UTI—Unidade de Tecnologia e Inovação, Instituto Nacional de Investigação Agrária e Veterinária, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; goncalves.melsamail.com or elsa.goncalves@iniav.pt (E.M.G.),

⁴GeoBiotec—Geobiociências, Geoengenharias e Geotecnologias, – Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa Campus de Caparica, 2829-516 Caparica, Portugal

Smoothies are a popular and convenient way of fruit and vegetables consuming and are defined as semi-processed, not refined, obtained by mechanical treatment (or, less often, by thermal treatment) of fruit followed by their preservation [1]. Products colour, texture and flavour are the key factors influencing the consumer acceptability. Enzyme polyphenoloxidase (PPO, EC 1.14.18.1) activity leading to degradation of polyphenols content and could decrease the nutritional status of product as a significant portion of anti-inflammatory and health promoting properties attributes related to U polyphenolic compounds [2,3]. Preservation technologies are necessary to minimize quality changes and extend the shelf-life of foods. The conventional treatment usually applied is heat treatment, which promotes the enzymatic and microbial inactivation resulting in to organoleptic and nutritional quality losses of product.

MAIN GOAL: To evaluate the impact of heat treatment (HT) on smoothie constituted by "Fuji "apple (41%), pineapple (31%), cabbage (8%), pumpkin (10%) and banana (10%), based on response surface methodology (RSM), using the temperature (70° – 100 °C) and treatment time (0.5 – 10.5 min), as dependent variables.

POLITÉCNICO

FECNOLOGIA DO MAR

ciências do mar

e do ambiente

DE LEIRIA

SMOOTHIE PREPARATION

OPTIMIZATION OF HEAT TREATMENT CONDITIONS

EXPERIMENTAL DESIGN

Evaluation of main interaction and quadratic effects of heat treatment conditions (temperature and time) on smoothie quality by central composite rotatable design (CCDR).

Table 1 – Coded and decoded matrix of independent variables.

Coded independent variables		Decoded independent variables	
X1	X2	Temperature (°C)	Time (min)
-1	-1	75	2
-1	1	75	9
1	-1	95	2
1	1	95	9
-1.41421	0	70	5.5
1.41421	0	100	5.5
0	-1.41421	85	0.5
0	1.41421	85	10.5
0	0	85	5.5
0	0	85	5.5
0	0	85	5.5
0	0	85	5.5
0	0	85	5.5
0	0	85	5.5

INDEPENDENT VARIABLE

Temperature $(70 - 100 \circ C)$ and time (0.5-10.5 min)

EVALUATION OF OPTIMIZED HEAT TREATMENT

Impact of optimized heat treatment (85 °C during 7 min) on smoothie quality: A REDUCTION OF PPO ENZYMATIC ACTIVITY WITH MINIMAL EFFECT ON GREEN COLOUR WAS ATTAINED?

METHODOLOGY

pH and SOLID SOLUBLE CONTENT (SSC)

POLYPHENOLOXIDASE ENZYMATIC ACTIVITY ((PPO) ⁵	5 Г

ANTIOXIDANT CAPACITY (DPPH⁶, FRAP⁷, ABTS⁸)

TOTAL PHENOLIC CONTENT⁹ (TPC)

STATISTICAL ANALYSIS

Figure 1 – Diagram flow of processing operation for smoothie preparation.

DEPENDENT VARIABLE

Colour and PPO enzymatic activity

ANOVA, Tukey test *P* < 0.05, significant differences

OPTIMIZATION OF HEAT TREATMENT CONDITIONS

The mathematical models for all attributes studied have been developed by response surface methodology (RSM) and its adequacy was tested by analysis of variance technique (ANOVA). The models equations (Eq. 1–4) resulted from RSM and the corresponding correlation coefficient (R^2 and R^2_{adj}) are summarized at Table 2. Both S values of R^2 and R^2_{adj} indicated the variation in colour changes and inactivation of PPO activity explained by the models. The obtained results showed that the second-order polynomial model adequately represented the experimental data.

Table 2 - Model equations of L*, a* and hue colour parameter and PPO enzymatic activity with respective regression coefficient.

Eq.	Parameter	Model equations	R ²	R^2_{adj}
(1)	PPO	PPO=414.70-8.42*T+0.05*T ² -1.22*t+0.55*t ² -0.09*T*t	0.97	0.96
(2)	L*	L*=-12.52+1.57*T-0.010*T ² -2.58*t+0.029*T*t	0.84	0,77
(3)	a*	a*=-28.56+0.18*T+1.89*t-0.021*t ² -0.013*T*t	0.86	0.79
(4)	hue	°h=166.43-0.99*T+0.004*T ² -2.71*t+0.091*t ² +0.01*T*t	0.92	0.87

Figure 1 shows the effects of temperature (T) and time (t) of heat treatment on colour (L* and a* colour value) and PPO enzymatic activity (C) of smoothie, respectively. Visual assessment of heat-treated smoothies confirm the darkness as consequence of heat treatment intensity.

	Figure	1 -	Response
	surface	plots	reflecting
	the	effect	s of
	tempera	ture (1	, °C) and
	time tre	eatmen	t (t <i>,</i> min)
	on L* (/	A), a*	(B) colour
	paramet	ers a	ind PPC
60	enzymat	ic activ	vity (C) of
20	smoothi	e.	

The highest values of luminosity were obtained after treatments at temperature range of 75° – 85 °C during period less than 6 min. The temperature and the time between 75 ° - 90 °C and 5 - 10 min led to the reduction of PPO enzymatic activity, an important enzyme that contributes to the enzymatic browning by oxidation of phenolic compounds.

EVALUATION OF OPTIMIZED HEAT TREATMENT

Regarding the Table 3, the heat-treated smoothie denoted a reduction of PPO enzymatic activity (90%), an important achievement since this enzyme is responsible for browning product.

Table 3 - Physical-chemical characterization of untreated and heat-treated smoothie

10000	Quality parameter	Untreated	Heat-treated
	CIE Lab		
	L*	42.14 ± 0.35 ^a	43.94 ± 0.60 ^b
2	a*	-16.14 ± 0.49 a	-7.73 ± 0.42 ^b
	b*	29.95 ± 1.14 ^a	29.51 ± 0.59 ^a
	°h	118.33 ± 0.30 ª	104.67 ± 0.60 ^b
	Antioxidant capacity (μ mol Trolox.100g ⁻¹)		
	FRAP	5230.49 ± 177.10 ^a	5911.44 ± 216.81 ^b
	DPPH	6321.29 ± 441.15 ^a	7443.79 ± 448.85 ^b
	ABTS	1564.32 ± 183.00 ª	2350.56 ± 82.07 ^b
	Total phenolic content (mg GAE.100g ⁻¹)	77.68 ± 2.05 ^a	85.34 ± 4.51 ^b

lard d	PPO activity (U.g ⁻¹)	28.12 ± 2.66 ^a	2.46 ± 0.96 ^b
± stanc	рН	3.57 ± 0.01 ª	3.57 ± 0.01 ª
Average	Solids soluble content (°Brix)	10.51 ± 0.06 ª	10.61 ± 0.06 ^b

Conclusions

The impact of heat treatment at 85 °C during 7 min, condition optimized by response surface methodology, was validated to guarantee the reduction of PPO enzymatic activity (90%), minimal colour alteration and augmented of antioxidant capacity of green smoothie. The study contributed to elevate the potential of fruits and vegetables consumption by food development with remarkable bioactive compounds, which can be positive for maintenance of smoothie quality during refrigerated storage.

SmartBio 1. Endurance', 'Portola'), from western region of Portugal. *Foods*, **2019**, 682. [5] Galvis-Sánchez, A., Gil-Izquierdo, A. and GIL, M. I. Comparative study of six pear cultivars in terms of their phenolic and vitamin C contents and antioxidant capacity. *J. Sci. Food Agric.*, **2003**, 83, 995-1003. [6] Santos, D.I.; Correia, M.J.N.; Characterization of nutritional, physicochemicals composition and antioxidant capacity. *J. Sci. Food Agric.*, **2019**, 682. [5] Galvis-Sánchez, A., Gil-Izquierdo, A. and GIL, M. I. Comparative study of six pear cultivars in terms of their phenolic and vitamin C contents and antioxidant capacity. *J. Sci. Food Agric.*, **2003**, 83, 995-1003. [6] Santos, D.I.; Correia, M.J.N.; Contents and antioxidant capacity of three strawberry "Fragaria x ananassa Duch" cultivars (Primoris', 'Endurance', 'Portola'), from western region of nutritional, physicochemical, physicochemic Mateus, M.M.; Saraiva, J.A.; Vicente, A.A.; Moldão, M. Fourier Transform Infrared (FT-IR) spectroscopy as a possible rapid tool to evaluate abiotic stress effects on pineapple by-products. Appl. Sci., 2019, 9, 4141. [7] Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Morais, S.M.; Sampaio, C.G.; Pérez-Jiménez, J.; Saura-Calixto, F.D. Metodologia científica: determinação do ferro (FRAP). Comunicado técnico 125, Embrapa Agroindústria Tropical, 2006, 1-4. [8] Re, R.; Pellegrini, N.; Proteggente, A.; restudy had the financial support of Fundação para a Ciência e Tecnologia (FCT) by Strategic project UIDB/04292/2020 granted to MARE, the Integrated Programme of SR&TD "Smart Valorization of Endogenous Marine Biological Resources Under a Changing Climate" (reference Centro-01-0145-FEDER-000018), co-funded by Centro 2020 program, Portugal 2020, and the financial support of Fundação para a Ciência e Tecnologia (FCT) by Strategic project UIDB/04292/2020 granted to MARE, the Integrated Programme of SR&TD "Smart Valorization of Endogenous Marine Biological Resources Under a Changing Climate" (reference Centro-01-0145-FEDER-000018), co-funded by Centro 2020 program, Portugal 2020, and the financial support of Fundação para a Ciência e Tecnologia (FCT) by Strategic project UIDB/04292/2020 granted to MARE, the Integrated Programme of SR&TD "Smart Valorization of Endogenous Marine Biological Resources Under a Changing Climate" (reference Centro-01-0145-FEDER-000018), co-funded by Centro 2020 program, Portugal 2020, and the financial support of Fundação para a Ciência e Tecnologia (FCT) by Strategic project UIDB/04292/2020 granted to MARE, the Integrated Programme of SR&TD "Smart Valorization of Endogenous Marine Biological Resources Under a Changing Climate" (reference Centro-01-0145-FEDER-000018), co-funded by Centro 2020 program, Portugal 2020, and the financial support of Fundação para a Ciência e Tecnologia (FCT) by Strategic project UIDB/04292/2020 granted to MARE, the Integrated Programme of SR&TD "Smart Valorization of Endogenous Marine Biological Resources Under a Changing Climate" (reference Centro-01-0145-FEDER-000018), co-funded by Centro 2020 program, Portugal 2020, and the financial support of Fundação para a Ciência e Tecnologia (FCT) by Strategic para a Ciência e Tecnologia 1 - 0 European Union, through the European Regional Development Fund. All authors acknowledgment the financial support in developing this study, and for supply raw materials used for smoothie processing 2020~ FCT