

#### **1st International Electronic Conference on Food Science and Functional Food**



#### MICROBIOLOGICAL AND PHYSICOCHEMICAL ASSESSMENT OF ARTISANALLY PRODUCED "ALHEIRA" FERMENTED SAUSAGES IN NORTHERN PORTUGAL

<u>Sara Coelho-Fernandes</u>, Odete Zefanias, Gisela Rodrigues, <u>Ana Sofia Faria</u>, Ângela Fernandes, Lillian Barros, Vasco Cadavez, Ursula Gonzales-Barron

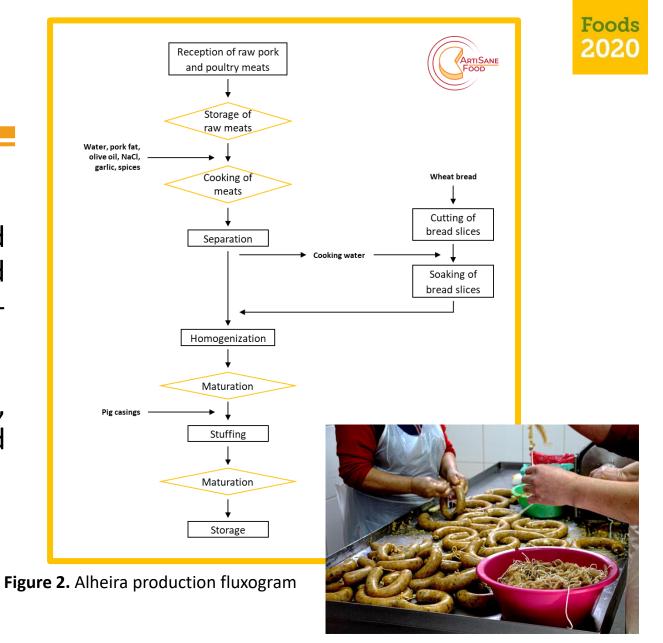


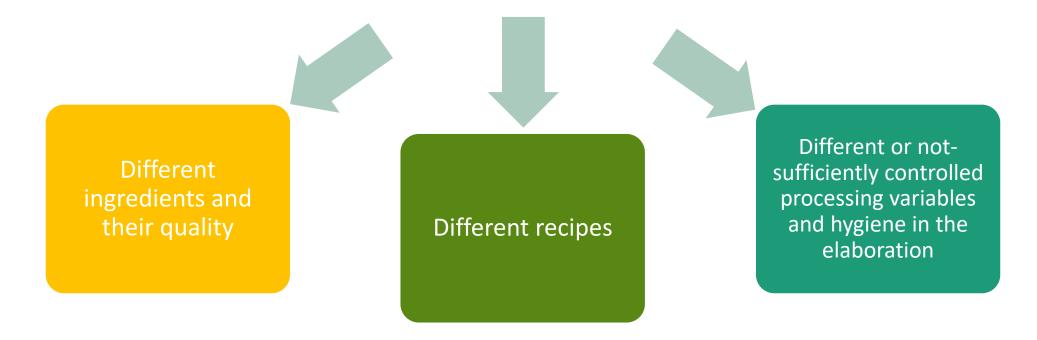
#### Introduction

- Alheira is a traditional non-ready-to-eat sausage produced mainly in Northern Portugal
- Traditionally made of a mix of poultry and pork, bread and seasonings
- New formulations using game meat, codfish, mushrooms or even vegetarian/vegan options are also available in the market

# Alheira production

- Cooked meats are shredded and mixed with salt, garlic, spices and sliced bread soaked in hot broth, to form a nonuniform paste
- This paste is stuffed into natural casings, and left to dry and mature at cold temperatures for 7-14 days





Figure 3. Alheira stuffing process





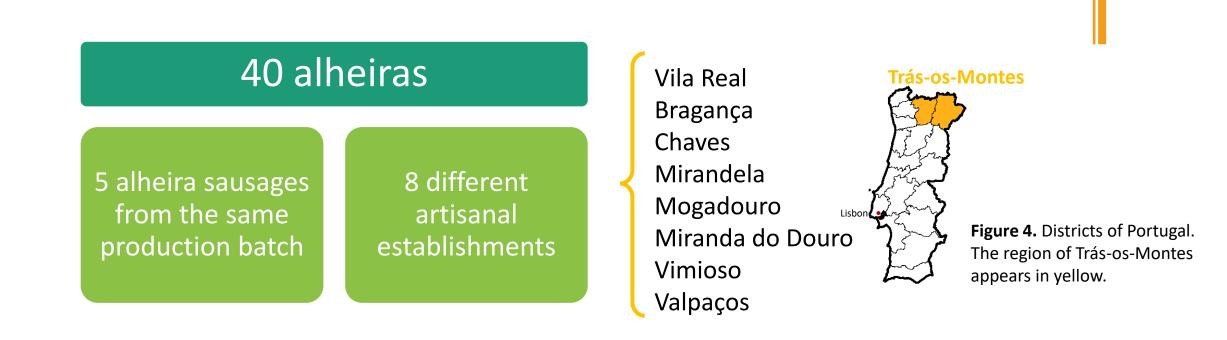
# **Quality of artisanal alheira**

 Quality characteristics of alheira (physicochemical, nutritional, microbiological and sensorial attributes) are highly variable between regional producers, but also between batches of production of the same enterprise








# **Objectives**

- i. To evaluate the variability in relevant physicochemical and microbiological attributes of alheira sausages elaborated by representative artisanal producers of Northern Portugal
- ii. To understand the associations between these attributes through the derivation of 3D quality maps based on principal component analysis



# **Materials and methods**





- Purchased 1-2 days after production and subjected to physicochemical and microbiological analysis within 24 hours after purchased
- Casings were carefully removed from the sausages under aseptic conditions, and the contents were divided for physicochemical and microbiological analyses



#### **Materials and methods**

- Physicochemical analysis
  - pH
  - Water activity (a<sub>w</sub>)
  - Moisture content
    - Ashes content
  - Protein content

• Microbiological analysis

- Total mesophiles
  Lactic acid bacteria (LAB in MRS and M17)
  - Staphylococcus aureus
  - Presumptive Clostridium
    perfringens
  - Presence of Salmonella spp.



# **Materials and methods**

#### • Statistical analysis

- Data from the 11 attributes were subjected to a principal component analysis (PCA), to summarize the information provided by the physicochemical and microbiological characteristics as well as their interrelationships
- From the 3D-PCA, maps of physicochemical and microbiological quality were built from the projection of sample scores onto the span of the principal components
- Scores were clustered by artisanal producer (i.e., location; not disclosed in the present study)



• The **physicochemical and microbiological quality** of alheira sausages presented **considerable variability** 

| Physicochemical analysis |                   |  | Microbiological analysis      |                          |  |
|--------------------------|-------------------|--|-------------------------------|--------------------------|--|
| рН                       | 4.034 - 4.606     |  | Mesophilic counts             | 7.161 – 9.679 log CFU/g  |  |
| a <sub>w</sub>           | 0.9758 – 0.9969   |  | LAB counts                    | 7.704 – 11.00 log CFU/g  |  |
| Moisture content         | 45.39 – 58.36%    |  | S. aureus counts              | 1.699 – 6.021 log CFU/g  |  |
| Protein content          | 17.78 – 28.00% db |  | Presumptive C.<br>perfringens | <0.699 – 1.699 log CFU/g |  |
| Ash content              | 2.79 – 4.71% db   |  |                               |                          |  |

Tables 1-2. Producer-specific mean values for physicochemical and microbiological analysis

• Salmonella spp. was detected in 4 of the 8 sampled artisanal producers at an incidence of 0.20 (one positive sample out of the five samples tested)

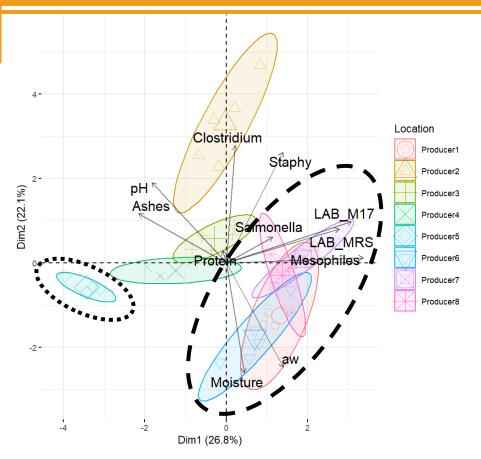




• Three meaningful components were extracted from the PCA, accounting for 63% of data variability

| Variable                | PC1   | PC2   | PC3   | Communalities |         |
|-------------------------|-------|-------|-------|---------------|---------|
| рН                      | -0.23 | 0.35  | 0.86  | 1.5           |         |
| a <sub>w</sub>          | 0.24  | -0.84 | 0.17  | 1.2           |         |
| Moisture                | -0.05 | -0.73 | -0.04 | 1.0           | Та      |
| Ashes                   | -0.48 | 0.47  | 0.05  | 2.0           | o<br>m  |
| Protein                 | 0.11  | -0.20 | 0.78  | 1.2           | tł      |
| Total mesophiles        | 0.85  | -0.14 | -0.26 | 1.2           | (F<br>C |
| Staphylococcus aureus   | 0.58  | 0.47  | 0.37  | 2.7           | V       |
| <i>Clostridium</i> spp. | 0.25  | 0.70  | 0.11  | 1.3           |         |
| LAB on MRS              | 0.79  | -0.05 | 0.12  | 1.1           |         |
| LAB on M17              | 0.81  | 0.14  | -0.34 | 1.4           |         |
| <i>Salmonella</i> spp.  | 0.35  | 0.04  | 0.10  | 1.2           |         |
| Proportion Variance     | 0.26  | 0.21  | 0.16  | -             |         |
| Cumulative Variance     | 0.26  | 0.48  | 0.63  | -             |         |

**Table 3.** Coefficients of correlationofthephysicochemicalandmicrobiologicalcharacteristicswiththethethreeVarimax-rotatedfactors(PC1, PC2, PC3)alongwithcommunalitiesandexplainedvariances



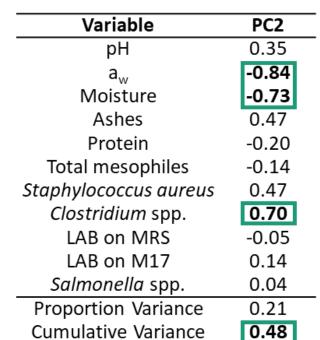

- The first component (PC1) explained 26% of data variability
- Highly correlated with LAB (on MRS agar (R=0.79); on M17 agar (R=0.81)) and mesophiles (R=0.85) and more weakly correlated with *S. aureus* (R=0.58)
- PC1 was labelled *longer processing duration*, as longer fermentation times (or more efficient fermentations) tend to produce greater populations of mesophiles and LAB
- If *S. aureus* contaminates the alheira mixture, its survival depends on an insufficient drop in pH during the first stage of fermentation. It would explain the weaker correlation of *S. aureus* with PC1, since in some cases this pathogen can either increase or decrease during processing.

| Variable              | PC1   |
|-----------------------|-------|
| рН                    | -0.23 |
| a <sub>w</sub>        | 0.24  |
| Moisture              | -0.05 |
| Ashes                 | -0.48 |
| Protein               | 0.11  |
| Total mesophiles      | 0.85  |
| Staphylococcus aureus | 0.58  |
| Clostridium spp.      | 0.25  |
| LAB on MRS            | 0.79  |
| LAB on M17            | 0.81  |
| Salmonella spp.       | 0.35  |
| Proportion Variance   | 0.26  |
| Cumulative Variance   | 0.26  |

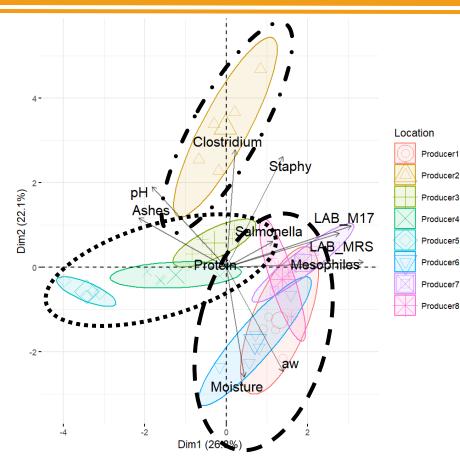







**Figure 5.** Map of the first and second principal component of the physicochemical and microbiological characteristics of alheira sausage with projections of samples from eight artisanal producers of Northern Portugal

- Producers 1, 6, 7 and 8 seem to employ a longer processing time for the production of alheira sausages, or have a more efficient fermentation process
- Producer 5 appears to have the shortest alheira production time, or has delayed fermentation




- PC2 (21% of total variability) was highly and inversely correlated with moisture (R=-0.73) and a<sub>w</sub> (R=-0.84), and directly correlated with presumptive *C. perfringens* counts (R=0.70)
- The inverse correlations imply that drier alheiras tended to present higher counts of C. perfringens
- PC2 was labelled as *greater dehydration*
- Greater dehydration of alheira sausages can arise from longer drying times or higher drying temperatures

| 0.21 |      |
|------|------|
| 0.48 |      |
|      |      |
|      |      |
|      | . 11 |
|      |      |
|      | , e  |







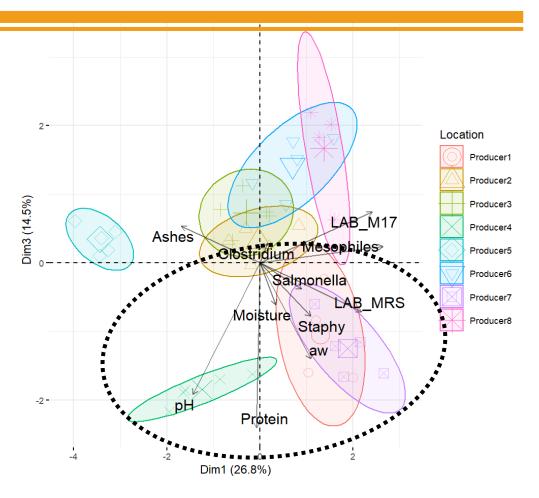
**Figure 5.** Map of the first and second principal component of the physicochemical and microbiological characteristics of alheira sausage with projections of samples from eight artisanal producers of Northern Portugal

- Producers 1, 6 and 8 produced sausages with overall higher moisture content, yet, of variable moisture (i.e., larger ellipses along PC2 axis)
- Producers 3, 4 and 5 elaborated drier sausages of more consistent moisture content (i.e., smaller ellipses along PC2)
- **Producer 2** elaborated **the most dehydrated sausages**, although their drying process may be not fully controlled (i.e., large ellipse along PC1 axis)



Foods 2.02.0

- The third component (PC3) explained 16% of the data variability, and is highly correlated with only two variables, pH (R=0.86) and protein content (R=0.78)
- Since in alheiras the main source of protein is the meat, PC3 can be labelled as *higher meat proportion in the formulation*
- The probable tendency of artisanal producers to use pig meat of high pH (i.e., DFD meats) may explain why protein content and pH of alheiras seem so highly associated
- Another explanation is that formulations with a lower proportion of meat are compensated with a higher proportion of regional bread, a foodstuff of lower pH. Thus, batters of higher proportion of meat will tend to have higher pH


| Variable                | PC3   |
|-------------------------|-------|
| рН                      | 0.86  |
| a <sub>w</sub>          | 0.17  |
| Moisture                | -0.04 |
| Ashes                   | 0.05  |
| Protein                 | 0.78  |
| Total mesophiles        | -0.26 |
| Staphylococcus aureus   | 0.37  |
| <i>Clostridium</i> spp. | 0.11  |
| LAB on MRS              | 0.12  |
| LAB on M17              | -0.34 |
| Salmonella spp.         | 0.10  |
| Proportion Variance     | 0.16  |
| Cumulative Variance     | 0.63  |







 Producers 1, 4 and 7 employed a higher concentration of meat in their formulations



**Figure 6.** Map of the first and third principal component of the physicochemical and microbiological characteristics of alheira sausage, with projections of samples from eight artisanal producers of Northern Portugal.



#### Conclusions

- This work identified three quality axes supporting the variability in artisanal alheiras:
  - duration of fermentation
  - extent of dehydration
  - proportion of meat in formulation

 It has also highlighted the need to implement better microbiological control and process standardization during the production of artisanal alheiras

## Acknowledgements





The authors are grateful to EU PRIMA programme and the Portuguese Foundation for Science and Technology (FCT) for funding the ArtiSaneFood project (PRIMA/0001/2018). The authors are grateful to FCT and FEDER under Programme PT2020 for financial support to CIMO (UIDB/ 00690/2020). Dr. Gonzales-Barron acknowledges the national funding by FCT, P.I., through the Institutional Scientific Employment Programme contract



