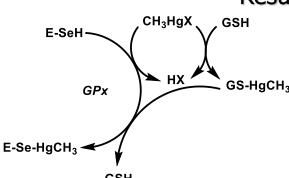


Methylmercury chalcogenolates ligand exchange: insight from DFT into a very fast reaction^[1]

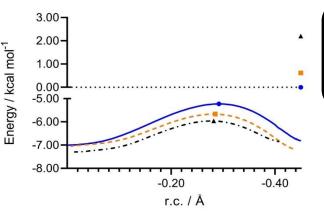
Andrea Madabeni^a, Marco Dalla Tiezza^a, Omage B. Folorunsho^b, Pablo A. Nogara^{a,b}, Marco Bortoli^a, Joao B.T. Rocha^b, Laura Orian^a

^aDipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, Italia ^bDepartamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria RS Brazil

Introduction


Methylmercury (CH₃Hg⁺) binding to thiol- and selenol- based enzymes is a key-element to explain its high toxicity. CH₃Hg⁺ is not found in its free form in biological environment, it is present as a chalcogenolate complex.^[2] Thus, **chalcogen-mercury bond reactivity** is implicated in the distribution of this toxicant in the human body.^[3] (Scheme 1)

Methodology and scope


State-of-the-art *DFT calculations* have been employed to investigate trends and mechanism of nine model **ligand exchange reactions** involving methylmercury chalcogenolates (**X**, **X**=S, Se, Te) i.e. $\underline{CH_3Hg}$ -**X**CH₃ + $\underline{CH_3X}$ \rightleftharpoons CH₃Hg-**X**CH₃ + CH₃**X**⁻ *Level of theory* (COSMO)-ZORA-BLYP-D3(BJ)/TZ2P.

References

A. Madabeni, M. Dalla Tiezza, O. B. Folorunsho, P. A. Nogara, M. Bortoli, J. B. Rocha, L. Orian, *J. Comput. Chem.* **2020**, 41, 2045-2059. [2] P. A. Nogara, C. S. Oliveira, G. L. Schmitz, P. C. Piquini, M. Farina, M. Aschner, J. B. T. Rocha, *Biochim. Biophys. Acta - Gen. Subj.* **2019**, *1863*, 129284. [3] D. L. Rabenstein, R. S. Reid, *Inorg. Chem.* **1984**, *23*, 1246–1250. [4] T. A. Hamlin, M. Swart, F. M. Bickelhaupt, *ChemPhysChem* **2018**, *19*, 1315–1330.

Scheme 1. Schematic representation of chalcogenmercury bonds formation and disruption involved in methylmercury delivery to GPx. X can be a thiolate or Cl⁻. GSH stands for glutathione.

Fig. 1. IRC reaction profiles computed for the exchange of CH_3S^- with CH_3Hg -**X** CH_3 (X=**S**, **Se**, **Te**). Dots represent the position of transition states and free products for each reaction.

Results and discussion

While in gas phase all reactions proceed through a stable intermediate, in water (COSMO) all reactions display a concerted mechanism (**Fig. 1**), with a transition state (TS) connecting a pre-coordinated reactant complex (RC) to a product complex (PC). (**Fig. 2**)

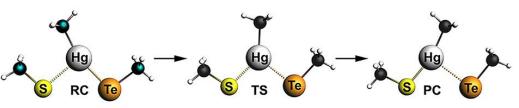
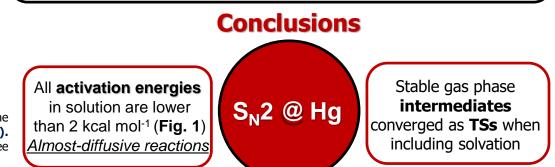



Fig. 2. Stationary points along the r.c. for CH_3S^- with CH_3Hg -Te CH_3

• Trends in agreement with **nucleophilicity and leaving group capabilities** of chalcogenolates, both in gas phase and in water.

• Switch to a concerted mechanism when going from gas phase to water in line with previous studies on S_N^2 reactions at heavy center atoms.^[4]

