Foods 2020

The 1st International Electronic Conference on Food Science and Functional Foods 10–25 NOVEMBER 2020 COLLINE

A greener and fast approach for determination of phenolic compounds by smartphone-based colorimetry

MARTINS, L.C.; SILVA, A.F.S.; MORAES, L.M.B.; GONÇALVES, I.C.; GODOY, B.B.R.; ROCHA, F.R.P.

Phenolic compounds

- Are secondary metabolites produced by plants in response to ultraviolet-light, water stress and attack by pests, like insects, viruses, and bacteria.
- These compounds have been investigated due to their benefits to human health, such as:
 - Antioxidants properties
 - Cardioprotective and anti-inflammatory properties

Foods

- **Antimicrobial property**
- **Carcinogenesis inhibitor**
- Regular consumption of fruit, vegetables and plant-based beverages.

Phenolic compounds

Acerola (Malpighia emarginata D.C)

- Tropical and subtropical climate fruit
- High ascorbic acid and bioactive molecules content

Potential substitute for synthetic antioxidants

Foods 2020

Microwave-assisted extraction

- Fast heating produced by non-ionizing electromagnetic waves (300 MHz to 300 GHz)
- HEATING MECHANISM: **Dipolar rotation** and **ionic conduction** occur due to alternating electric field (2,45 GHz)
- High pressure inside the cell causes the disruption and release of bioactive compounds

Foods

Digital image photometry

400 nm - 700 nm Visible radiation

0 RGB system

• The RGB system ranges from 0 to 255

- The reflected radiation is converted in mensurable data from the RGB system
- The channel corresponding to the complementary color of the sample is more attenuated

Foods

Materials and Methods

Acerola lyophilized

Microwave oven (Ethos 1600, Milestone)

Hydroalcoholic extract

Centrifugation and filtration Foods

2020

Hydroalcoholic extract filtred

Spectrophotometer - Femto®

Total phenolic content (TPC) (Folin-Ciocalteau reagent)

Results

Real values, coded values, and TPC content in extraction conditions indicated by the Doehlert design

Experiment	Variables			Analytical response ¹	
	Temperature (°C)	Ethanol concentration (% v/v)	Extraction time (min)	Reference method	Proposed method
1	60 (1)	50 (0)	30 (0)	107 ± 2	107 ± 2
2	53 (0.500)	99 (0.866)	30 (0)	101.4 ± 0.8	102 ± 2
3	53 (0.500)	66 (0.289)	50 (0.817)	106 ± 2	107 ± 3
4	30 (-1)	50 (0)	30 (0)	131 ± 1	131.1 ± 0.8
5	38 (-0.500)	0 (-0.866)	30 (0)	76.5 ± 0.9	77 ± 2
6	38 (-0.500)	33 (-0.289)	10 (-0.817)	121.3 ± 0.9	124 ± 4
7	53(0.500)	0 (-0.866)	30 (0)	79 ± 2	78 ± 1
8	53 (0.500)	33 (-0.289)	10 (-0.817)	129 ± 2	132 ± 1
9	38 (-0.500)	99 (0.866)	30 (0)	124.4 ± 0.9	126.3 ± 0.8
10	45 (0)	83 (0.577)	10 (-0.817)	114.6 ± 0.6	119.0 ± 0.8
11	38 (-0.500)	66 (0.289)	50 (0.817)	145.0 ± 0.7	146 ± 4
12	45 (0)	17 (-0.577)	50 (0.817)	120 ± 5	120 ± 5
13 (CP)	45 (0)	50 (0)	30 (0)	122	123
14 (CP)	45 (0)	50 (0)	30 (0)	113	113
15 (CP)	45 (0)	50 (0)	30 (0)	120	116
16 (CP)	45 (0)	50 (0)	30 (0)	126	124
17 (CP)	45 (0)	50 (0)	30 (0)	113	116

The experiment n. 11 presented the highest efficient of extraction

Foods

2020

Extraction by convective heating (extraction with 14.5% (v/v) ethanol, at 55.6 °C for 50 min)

Conclusion

Foods 2020

- More efficient extraction achieved by microwave-assisted extraction
- The smartphone-based detection presented an efficient, cost-effective, simple, and fast approach to determine the total phenolic content in acerola extracts
- Minimization of reagent consumption and waste generation (Green Chemistry)
- **Next steps:** determination of the phenolic profile using HPLC

Foods 2020

The 1st International Electronic Conference on Food Science and Functional Foods 10-25 NOVEMBER 2020 ONLINE

Luís Cláudio Martins luis.claudio.martins@usp.br

